pandas.core.groupby.SeriesGroupBy.prod — pandas 3.0.0.dev0+2098.g9c5b9ee823 documentation (original) (raw)
SeriesGroupBy.prod(numeric_only=False, min_count=0, skipna=True)[source]#
Compute prod of group values.
Parameters:
numeric_onlybool, default False
Include only float, int, boolean columns.
Changed in version 2.0.0: numeric_only no longer accepts None
.
min_countint, default 0
The required number of valid values to perform the operation. If fewer than min_count
non-NA values are present the result will be NA.
skipnabool, default True
Exclude NA/null values. If an entire group is NA, the result will be NA.
Added in version 3.0.0.
Returns:
Series or DataFrame
Computed prod of values within each group.
See also
Series.prod
Return the product of the values over the requested axis.
DataFrame.prod
Return the product of the values over the requested axis.
Examples
For SeriesGroupBy:
lst = ["a", "a", "b", "b"] ser = pd.Series([1, 2, 3, 4], index=lst) ser a 1 a 2 b 3 b 4 dtype: int64 ser.groupby(level=0).prod() a 2 b 12 dtype: int64
For DataFrameGroupBy:
data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] df = pd.DataFrame( ... data, ... columns=["a", "b", "c"], ... index=["tiger", "leopard", "cheetah", "lion"], ... ) df a b c tiger 1 8 2 leopard 1 2 5 cheetah 2 5 8 lion 2 6 9 df.groupby("a").prod() b c a 1 16 10 2 30 72