Working with text data — pandas 3.0.0.dev0+2095.g2e141aaf99 documentation (original) (raw)
Text data types#
There are two ways to store text data in pandas:
object
dtype NumPy array.- StringDtype extension type.
We recommend using StringDtype to store text data.
Prior to pandas 1.0, object
dtype was the only option. This was unfortunate for many reasons:
- You can accidentally store a mixture of strings and non-strings in an
object
dtype array. It’s better to have a dedicated dtype. object
dtype breaks dtype-specific operations like DataFrame.select_dtypes(). There isn’t a clear way to select just text while excluding non-text but still object-dtype columns.- When reading code, the contents of an
object
dtype array is less clear than'string'
.
Currently, the performance of object
dtype arrays of strings andarrays.StringArray are about the same. We expect future enhancements to significantly increase the performance and lower the memory overhead ofStringArray.
Warning
StringArray
is currently considered experimental. The implementation and parts of the API may change without warning.
For backwards-compatibility, object
dtype remains the default type we infer a list of strings to:
In [1]: pd.Series(["a", "b", "c"]) Out[1]: 0 a 1 b 2 c dtype: object
To explicitly request string
dtype, specify the dtype
:
In [2]: pd.Series(["a", "b", "c"], dtype="string") Out[2]: 0 a 1 b 2 c dtype: string
In [3]: pd.Series(["a", "b", "c"], dtype=pd.StringDtype()) Out[3]: 0 a 1 b 2 c dtype: string
Or astype
after the Series
or DataFrame
is created:
In [4]: s = pd.Series(["a", "b", "c"])
In [5]: s Out[5]: 0 a 1 b 2 c dtype: object
In [6]: s.astype("string") Out[6]: 0 a 1 b 2 c dtype: string
You can also use StringDtype/"string"
as the dtype on non-string data and it will be converted to string
dtype:
In [7]: s = pd.Series(["a", 2, np.nan], dtype="string")
In [8]: s Out[8]: 0 a 1 2 2 dtype: string
In [9]: type(s[1]) Out[9]: str
or convert from existing pandas data:
In [10]: s1 = pd.Series([1, 2, np.nan], dtype="Int64")
In [11]: s1 Out[11]: 0 1 1 2 2 dtype: Int64
In [12]: s2 = s1.astype("string")
In [13]: s2 Out[13]: 0 1 1 2 2 dtype: string
In [14]: type(s2[0]) Out[14]: str
Behavior differences#
These are places where the behavior of StringDtype
objects differ fromobject
dtype:
- For
StringDtype
, string accessor methodsthat return numeric output will always return a nullable integer dtype, rather than either int or float dtype, depending on the presence of NA values. Methods returning boolean output will return a nullable boolean dtype.
In [15]: s = pd.Series(["a", None, "b"], dtype="string")
In [16]: s
Out[16]:
0 a
1
2 b
dtype: string
In [17]: s.str.count("a")
Out[17]:
0 1
1
2 0
dtype: Int64
In [18]: s.dropna().str.count("a")
Out[18]:
0 1
2 0
dtype: Int64
Both outputs are Int64
dtype. Compare that with object-dtype:
In [19]: s2 = pd.Series(["a", None, "b"], dtype="object")
In [20]: s2.str.count("a")
Out[20]:
0 1.0
1 NaN
2 0.0
dtype: float64
In [21]: s2.dropna().str.count("a")
Out[21]:
0 1
2 0
dtype: int64
When NA values are present, the output dtype is float64. Similarly for methods returning boolean values.
In [22]: s.str.isdigit()
Out[22]:
0 False
1
2 False
dtype: boolean
In [23]: s.str.match("a")
Out[23]:
0 True
1
2 False
dtype: boolean
2. Some string methods, like Series.str.decode() are not available on StringArray
because StringArray
only holds strings, not bytes.
3. In comparison operations, arrays.StringArray and Series
backed by a StringArray
will return an object with BooleanDtype, rather than a bool
dtype object. Missing values in a StringArray
will propagate in comparison operations, rather than always comparing unequal like numpy.nan
.
Everything else that follows in the rest of this document applies equally tostring
and object
dtype.
String methods#
Series and Index are equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the str
attribute and generally have names matching the equivalent (scalar) built-in string methods:
In [24]: s = pd.Series( ....: ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string" ....: ) ....:
In [25]: s.str.lower() Out[25]: 0 a 1 b 2 c 3 aaba 4 baca 5 6 caba 7 dog 8 cat dtype: string
In [26]: s.str.upper() Out[26]: 0 A 1 B 2 C 3 AABA 4 BACA 5 6 CABA 7 DOG 8 CAT dtype: string
In [27]: s.str.len() Out[27]: 0 1 1 1 2 1 3 4 4 4 5 6 4 7 3 8 3 dtype: Int64
In [28]: idx = pd.Index([" jack", "jill ", " jesse ", "frank"])
In [29]: idx.str.strip() Out[29]: Index(['jack', 'jill', 'jesse', 'frank'], dtype='object')
In [30]: idx.str.lstrip() Out[30]: Index(['jack', 'jill ', 'jesse ', 'frank'], dtype='object')
In [31]: idx.str.rstrip() Out[31]: Index([' jack', 'jill', ' jesse', 'frank'], dtype='object')
The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:
In [32]: df = pd.DataFrame( ....: np.random.randn(3, 2), columns=[" Column A ", " Column B "], index=range(3) ....: ) ....:
In [33]: df Out[33]: Column A Column B 0 0.469112 -0.282863 1 -1.509059 -1.135632 2 1.212112 -0.173215
Since df.columns
is an Index object, we can use the .str
accessor
In [34]: df.columns.str.strip() Out[34]: Index(['Column A', 'Column B'], dtype='object')
In [35]: df.columns.str.lower() Out[35]: Index([' column a ', ' column b '], dtype='object')
These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing whitespaces, lower casing all names, and replacing any remaining whitespaces with underscores:
In [36]: df.columns = df.columns.str.strip().str.lower().str.replace(" ", "_")
In [37]: df Out[37]: column_a column_b 0 0.469112 -0.282863 1 -1.509059 -1.135632 2 1.212112 -0.173215
Note
If you have a Series
where lots of elements are repeated (i.e. the number of unique elements in the Series
is a lot smaller than the length of theSeries
), it can be faster to convert the original Series
to one of typecategory
and then use .str.<method>
or .dt.<property>
on that. The performance difference comes from the fact that, for Series
of type category
, the string operations are done on the .categories
and not on each element of theSeries
.
Please note that a Series
of type category
with string .categories
has some limitations in comparison to Series
of type string (e.g. you can’t add strings to each other: s + " " + s
won’t work if s
is a Series
of type category
). Also,.str
methods which operate on elements of type list
are not available on such aSeries
.
Warning
The type of the Series is inferred and is one among the allowed types (i.e. strings).
Generally speaking, the .str
accessor is intended to work only on strings. With very few exceptions, other uses are not supported, and may be disabled at a later point.
Splitting and replacing strings#
Methods like split
return a Series of lists:
In [38]: s2 = pd.Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype="string")
In [39]: s2.str.split("_") Out[39]: 0 [a, b, c] 1 [c, d, e] 2 3 [f, g, h] dtype: object
Elements in the split lists can be accessed using get
or []
notation:
In [40]: s2.str.split("_").str.get(1) Out[40]: 0 b 1 d 2 3 g dtype: object
In [41]: s2.str.split("_").str[1] Out[41]: 0 b 1 d 2 3 g dtype: object
It is easy to expand this to return a DataFrame using expand
.
In [42]: s2.str.split("_", expand=True) Out[42]: 0 1 2 0 a b c 1 c d e 2 3 f g h
When original Series
has StringDtype, the output columns will all be StringDtype as well.
It is also possible to limit the number of splits:
In [43]: s2.str.split("_", expand=True, n=1) Out[43]: 0 1 0 a b_c 1 c d_e 2 3 f g_h
rsplit
is similar to split
except it works in the reverse direction, i.e., from the end of the string to the beginning of the string:
In [44]: s2.str.rsplit("_", expand=True, n=1) Out[44]: 0 1 0 a_b c 1 c_d e 2 3 f_g h
replace
optionally uses regular expressions:
In [45]: s3 = pd.Series( ....: ["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"], ....: dtype="string", ....: ) ....:
In [46]: s3
Out[46]:
0 A
1 B
2 C
3 Aaba
4 Baca
5
6
7 CABA
8 dog
9 cat
dtype: string
In [47]: s3.str.replace("^.a|dog", "XX-XX ", case=False, regex=True)
Out[47]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: string
Changed in version 2.0.
Single character pattern with regex=True
will also be treated as regular expressions:
In [48]: s4 = pd.Series(["a.b", ".", "b", np.nan, ""], dtype="string")
In [49]: s4
Out[49]:
0 a.b
1 .
2 b
3
4
dtype: string
In [50]: s4.str.replace(".", "a", regex=True)
Out[50]:
0 aaa
1 a
2 a
3
4
dtype: string
If you want literal replacement of a string (equivalent to str.replace()), you can set the optional regex
parameter to False
, rather than escaping each character. In this case both pat
and repl
must be strings:
In [51]: dollars = pd.Series(["12", "-$10", "$10,000"], dtype="string")
These lines are equivalent
In [52]: dollars.str.replace(r"-$", "-", regex=True) Out[52]: 0 12 1 -10 2 $10,000 dtype: string
In [53]: dollars.str.replace("-$", "-", regex=False) Out[53]: 0 12 1 -10 2 $10,000 dtype: string
The replace
method can also take a callable as replacement. It is called on every pat
using re.sub(). The callable should expect one positional argument (a regex object) and return a string.
Reverse every lowercase alphabetic word
In [54]: pat = r"[a-z]+"
In [55]: def repl(m): ....: return m.group(0)[::-1] ....:
In [56]: pd.Series(["foo 123", "bar baz", np.nan], dtype="string").str.replace( ....: pat, repl, regex=True ....: ) ....: Out[56]: 0 oof 123 1 rab zab 2 dtype: string
Using regex groups
In [57]: pat = r"(?P\w+) (?P\w+) (?P\w+)"
In [58]: def repl(m): ....: return m.group("two").swapcase() ....:
In [59]: pd.Series(["Foo Bar Baz", np.nan], dtype="string").str.replace( ....: pat, repl, regex=True ....: ) ....: Out[59]: 0 bAR 1 dtype: string
The replace
method also accepts a compiled regular expression object from re.compile() as a pattern. All flags should be included in the compiled regular expression object.
In [60]: import re
In [61]: regex_pat = re.compile(r"^.a|dog", flags=re.IGNORECASE)
In [62]: s3.str.replace(regex_pat, "XX-XX ", regex=True)
Out[62]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: string
Including a flags
argument when calling replace
with a compiled regular expression object will raise a ValueError
.
In [63]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)
ValueError: case and flags cannot be set when pat is a compiled regex
removeprefix
and removesuffix
have the same effect as str.removeprefix
and str.removesuffix
added inPython 3.9:
Added in version 1.4.0.
In [64]: s = pd.Series(["str_foo", "str_bar", "no_prefix"])
In [65]: s.str.removeprefix("str_") Out[65]: 0 foo 1 bar 2 no_prefix dtype: object
In [66]: s = pd.Series(["foo_str", "bar_str", "no_suffix"])
In [67]: s.str.removesuffix("_str") Out[67]: 0 foo 1 bar 2 no_suffix dtype: object
Concatenation#
There are several ways to concatenate a Series
or Index
, either with itself or others, all based on cat(), resp. Index.str.cat
.
Concatenating a single Series into a string#
The content of a Series
(or Index
) can be concatenated:
In [68]: s = pd.Series(["a", "b", "c", "d"], dtype="string")
In [69]: s.str.cat(sep=",") Out[69]: 'a,b,c,d'
If not specified, the keyword sep
for the separator defaults to the empty string, sep=''
:
In [70]: s.str.cat() Out[70]: 'abcd'
By default, missing values are ignored. Using na_rep
, they can be given a representation:
In [71]: t = pd.Series(["a", "b", np.nan, "d"], dtype="string")
In [72]: t.str.cat(sep=",") Out[72]: 'a,b,d'
In [73]: t.str.cat(sep=",", na_rep="-") Out[73]: 'a,b,-,d'
Concatenating a Series and something list-like into a Series#
The first argument to cat() can be a list-like object, provided that it matches the length of the calling Series
(or Index
).
In [74]: s.str.cat(["A", "B", "C", "D"]) Out[74]: 0 aA 1 bB 2 cC 3 dD dtype: string
Missing values on either side will result in missing values in the result as well, unless na_rep
is specified:
In [75]: s.str.cat(t) Out[75]: 0 aa 1 bb 2 3 dd dtype: string
In [76]: s.str.cat(t, na_rep="-") Out[76]: 0 aa 1 bb 2 c- 3 dd dtype: string
Concatenating a Series and something array-like into a Series#
The parameter others
can also be two-dimensional. In this case, the number or rows must match the lengths of the calling Series
(or Index
).
In [77]: d = pd.concat([t, s], axis=1)
In [78]: s Out[78]: 0 a 1 b 2 c 3 d dtype: string
In [79]: d Out[79]: 0 1 0 a a 1 b b 2 c 3 d d
In [80]: s.str.cat(d, na_rep="-") Out[80]: 0 aaa 1 bbb 2 c-c 3 ddd dtype: string
Concatenating a Series and an indexed object into a Series, with alignment#
For concatenation with a Series
or DataFrame
, it is possible to align the indexes before concatenation by setting the join
-keyword.
In [81]: u = pd.Series(["b", "d", "a", "c"], index=[1, 3, 0, 2], dtype="string")
In [82]: s Out[82]: 0 a 1 b 2 c 3 d dtype: string
In [83]: u Out[83]: 1 b 3 d 0 a 2 c dtype: string
In [84]: s.str.cat(u) Out[84]: 0 aa 1 bb 2 cc 3 dd dtype: string
In [85]: s.str.cat(u, join="left") Out[85]: 0 aa 1 bb 2 cc 3 dd dtype: string
The usual options are available for join
(one of 'left', 'outer', 'inner', 'right'
). In particular, alignment also means that the different lengths do not need to coincide anymore.
In [86]: v = pd.Series(["z", "a", "b", "d", "e"], index=[-1, 0, 1, 3, 4], dtype="string")
In [87]: s Out[87]: 0 a 1 b 2 c 3 d dtype: string
In [88]: v Out[88]: -1 z 0 a 1 b 3 d 4 e dtype: string
In [89]: s.str.cat(v, join="left", na_rep="-") Out[89]: 0 aa 1 bb 2 c- 3 dd dtype: string
In [90]: s.str.cat(v, join="outer", na_rep="-") Out[90]: -1 -z 0 aa 1 bb 2 c- 3 dd 4 -e dtype: string
The same alignment can be used when others
is a DataFrame
:
In [91]: f = d.loc[[3, 2, 1, 0], :]
In [92]: s Out[92]: 0 a 1 b 2 c 3 d dtype: string
In [93]: f Out[93]: 0 1 3 d d 2 c 1 b b 0 a a
In [94]: s.str.cat(f, join="left", na_rep="-") Out[94]: 0 aaa 1 bbb 2 c-c 3 ddd dtype: string
Concatenating a Series and many objects into a Series#
Several array-like items (specifically: Series
, Index
, and 1-dimensional variants of np.ndarray
) can be combined in a list-like container (including iterators, dict
-views, etc.).
In [95]: s Out[95]: 0 a 1 b 2 c 3 d dtype: string
In [96]: u Out[96]: 1 b 3 d 0 a 2 c dtype: string
In [97]: s.str.cat([u, u.to_numpy()], join="left") Out[97]: 0 aab 1 bbd 2 cca 3 ddc dtype: string
All elements without an index (e.g. np.ndarray
) within the passed list-like must match in length to the calling Series
(or Index
), but Series
and Index
may have arbitrary length (as long as alignment is not disabled with join=None
):
In [98]: v Out[98]: -1 z 0 a 1 b 3 d 4 e dtype: string
In [99]: s.str.cat([v, u, u.to_numpy()], join="outer", na_rep="-") Out[99]: -1 -z-- 0 aaab 1 bbbd 2 c-ca 3 dddc 4 -e-- dtype: string
If using join='right'
on a list-like of others
that contains different indexes, the union of these indexes will be used as the basis for the final concatenation:
In [100]: u.loc[[3]] Out[100]: 3 d dtype: string
In [101]: v.loc[[-1, 0]] Out[101]: -1 z 0 a dtype: string
In [102]: s.str.cat([u.loc[[3]], v.loc[[-1, 0]]], join="right", na_rep="-") Out[102]: 3 dd- -1 --z 0 a-a dtype: string
Indexing with .str
#
You can use []
notation to directly index by position locations. If you index past the end of the string, the result will be a NaN
.
In [103]: s = pd.Series( .....: ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string" .....: ) .....:
In [104]: s.str[0] Out[104]: 0 A 1 B 2 C 3 A 4 B 5 6 C 7 d 8 c dtype: string
In [105]: s.str[1] Out[105]: 0 1 2 3 a 4 a 5 6 A 7 o 8 a dtype: string
Testing for strings that match or contain a pattern#
You can check whether elements contain a pattern:
In [131]: pattern = r"[0-9][a-z]"
In [132]: pd.Series( .....: ["1", "2", "3a", "3b", "03c", "4dx"], .....: dtype="string", .....: ).str.contains(pattern) .....: Out[132]: 0 False 1 False 2 True 3 True 4 True 5 True dtype: boolean
Or whether elements match a pattern:
In [133]: pd.Series( .....: ["1", "2", "3a", "3b", "03c", "4dx"], .....: dtype="string", .....: ).str.match(pattern) .....: Out[133]: 0 False 1 False 2 True 3 True 4 False 5 True dtype: boolean
In [134]: pd.Series( .....: ["1", "2", "3a", "3b", "03c", "4dx"], .....: dtype="string", .....: ).str.fullmatch(pattern) .....: Out[134]: 0 False 1 False 2 True 3 True 4 False 5 False dtype: boolean
Note
The distinction between match
, fullmatch
, and contains
is strictness:fullmatch
tests whether the entire string matches the regular expression;match
tests whether there is a match of the regular expression that begins at the first character of the string; and contains
tests whether there is a match of the regular expression at any position within the string.
The corresponding functions in the re
package for these three match modes arere.fullmatch,re.match, andre.search, respectively.
Methods like match
, fullmatch
, contains
, startswith
, andendswith
take an extra na
argument so missing values can be considered True or False:
In [135]: s4 = pd.Series( .....: ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string" .....: ) .....:
In [136]: s4.str.contains("A", na=False) Out[136]: 0 True 1 False 2 False 3 True 4 False 5 False 6 True 7 False 8 False dtype: boolean
Creating indicator variables#
You can extract dummy variables from string columns. For example if they are separated by a '|'
:
In [137]: s = pd.Series(["a", "a|b", np.nan, "a|c"], dtype="string")
In [138]: s.str.get_dummies(sep="|") Out[138]: a b c 0 1 0 0 1 1 1 0 2 0 0 0 3 1 0 1
String Index
also supports get_dummies
which returns a MultiIndex
.
In [139]: idx = pd.Index(["a", "a|b", np.nan, "a|c"])
In [140]: idx.str.get_dummies(sep="|") Out[140]: MultiIndex([(1, 0, 0), (1, 1, 0), (0, 0, 0), (1, 0, 1)], names=['a', 'b', 'c'])
See also get_dummies().