pandas.DataFrame.all — pandas 2.2.3 documentation (original) (raw)

DataFrame.all(axis=0, bool_only=False, skipna=True, **kwargs)[source]#

Return whether all elements are True, potentially over an axis.

Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty).

Parameters:

axis{0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced. For Series this parameter is unused and defaults to 0.

bool_onlybool, default False

Include only boolean columns. Not implemented for Series.

skipnabool, default True

Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.

**kwargsany, default None

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:

Series or DataFrame

If level is specified, then, DataFrame is returned; otherwise, Series is returned.

See also

Series.all

Return True if all elements are True.

DataFrame.any

Return True if one (or more) elements are True.

Examples

Series

pd.Series([True, True]).all() True pd.Series([True, False]).all() False pd.Series([], dtype="float64").all() True pd.Series([np.nan]).all() True pd.Series([np.nan]).all(skipna=False) True

DataFrames

Create a dataframe from a dictionary.

df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) df col1 col2 0 True True 1 True False

Default behaviour checks if values in each column all return True.

df.all() col1 True col2 False dtype: bool

Specify axis='columns' to check if values in each row all return True.

df.all(axis='columns') 0 True 1 False dtype: bool

Or axis=None for whether every value is True.

df.all(axis=None) False