pandas.DataFrame.expanding — pandas 2.2.3 documentation (original) (raw)
DataFrame.expanding(min_periods=1, axis=<no_default>, method='single')[source]#
Provide expanding window calculations.
Parameters:
min_periodsint, default 1
Minimum number of observations in window required to have a value; otherwise, result is np.nan
.
axisint or str, default 0
If 0
or 'index'
, roll across the rows.
If 1
or 'columns'
, roll across the columns.
For Series this parameter is unused and defaults to 0.
methodstr {‘single’, ‘table’}, default ‘single’
Execute the rolling operation per single column or row ('single'
) or over the entire object ('table'
).
This argument is only implemented when specifying engine='numba'
in the method call.
Added in version 1.3.0.
Returns:
pandas.api.typing.Expanding
See also
Provides rolling window calculations.
Provides exponential weighted functions.
Notes
See Windowing Operations for further usage details and examples.
Examples
df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0
min_periods
Expanding sum with 1 vs 3 observations needed to calculate a value.
df.expanding(1).sum() B 0 0.0 1 1.0 2 3.0 3 3.0 4 7.0 df.expanding(3).sum() B 0 NaN 1 NaN 2 3.0 3 3.0 4 7.0