pandas.DataFrame.first_valid_index — pandas 2.2.3 documentation (original) (raw)
DataFrame.first_valid_index()[source]#
Return index for first non-NA value or None, if no non-NA value is found.
Returns:
type of index
Examples
For Series:
s = pd.Series([None, 3, 4]) s.first_valid_index() 1 s.last_valid_index() 2
s = pd.Series([None, None]) print(s.first_valid_index()) None print(s.last_valid_index()) None
If all elements in Series are NA/null, returns None.
s = pd.Series() print(s.first_valid_index()) None print(s.last_valid_index()) None
If Series is empty, returns None.
For DataFrame:
df = pd.DataFrame({'A': [None, None, 2], 'B': [None, 3, 4]}) df A B 0 NaN NaN 1 NaN 3.0 2 2.0 4.0 df.first_valid_index() 1 df.last_valid_index() 2
df = pd.DataFrame({'A': [None, None, None], 'B': [None, None, None]}) df A B 0 None None 1 None None 2 None None print(df.first_valid_index()) None print(df.last_valid_index()) None
If all elements in DataFrame are NA/null, returns None.
df = pd.DataFrame() df Empty DataFrame Columns: [] Index: [] print(df.first_valid_index()) None print(df.last_valid_index()) None
If DataFrame is empty, returns None.