pandas.DataFrame.mask — pandas 2.2.3 documentation (original) (raw)
DataFrame.mask(cond, other=<no_default>, *, inplace=False, axis=None, level=None)[source]#
Replace values where the condition is True.
Parameters:
condbool Series/DataFrame, array-like, or callable
Where cond is False, keep the original value. Where True, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).
otherscalar, Series/DataFrame, or callable
Entries where cond is True are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan
for numpy dtypes, pd.NA
for extension dtypes).
inplacebool, default False
Whether to perform the operation in place on the data.
axisint, default None
Alignment axis if needed. For Series this parameter is unused and defaults to 0.
levelint, default None
Alignment level if needed.
Returns:
Same type as caller or None if inplace=True
.
Notes
The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if cond
is False
the element is used; otherwise the corresponding element from the DataFrameother
is used. If the axis of other
does not align with axis ofcond
Series/DataFrame, the misaligned index positions will be filled with True.
The signature for DataFrame.where() differs fromnumpy.where(). Roughly df1.where(m, df2)
is equivalent tonp.where(m, df1, df2)
.
For further details and examples see the mask
documentation inindexing.
The dtype of the object takes precedence. The fill value is casted to the object’s dtype, if this can be done losslessly.
Examples
s = pd.Series(range(5)) s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64 s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
s = pd.Series(range(5)) t = pd.Series([True, False]) s.where(t, 99) 0 0 1 99 2 99 3 99 4 99 dtype: int64 s.mask(t, 99) 0 99 1 1 2 99 3 99 4 99 dtype: int64
s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64 s.mask(s > 1, 10) 0 0 1 1 2 10 3 10 4 10 dtype: int64
df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 m = df % 3 == 0 df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True