pandas.DataFrame.max — pandas 2.2.3 documentation (original) (raw)
DataFrame.max(axis=0, skipna=True, numeric_only=False, **kwargs)[source]#
Return the maximum of the values over the requested axis.
If you want the index of the maximum, use idxmax
. This is the equivalent of the numpy.ndarray
method argmax
.
Parameters:
axis{index (0), columns (1)}
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
For DataFrames, specifying axis=None
will apply the aggregation across both axes.
Added in version 2.0.0.
skipnabool, default True
Exclude NA/null values when computing the result.
numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
**kwargs
Additional keyword arguments to be passed to the function.
Returns:
Series or scalar
Examples
idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) s = pd.Series([4, 2, 0, 8], name='legs', index=idx) s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64