pandas.DataFrame.plot.line — pandas 2.2.3 documentation (original) (raw)

DataFrame.plot.line(x=None, y=None, **kwargs)[source]#

Plot Series or DataFrame as lines.

This function is useful to plot lines using DataFrame’s values as coordinates.

Parameters:

xlabel or position, optional

Allows plotting of one column versus another. If not specified, the index of the DataFrame is used.

ylabel or position, optional

Allows plotting of one column versus another. If not specified, all numerical columns are used.

colorstr, array-like, or dict, optional

The color for each of the DataFrame’s columns. Possible values are:

**kwargs

Additional keyword arguments are documented inDataFrame.plot().

Returns:

matplotlib.axes.Axes or np.ndarray of them

An ndarray is returned with one matplotlib.axes.Axesper column when subplots=True.

Examples

s = pd.Series([1, 3, 2]) s.plot.line()

../../_images/pandas-DataFrame-plot-line-1.png

The following example shows the populations for some animals over the years.

df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) lines = df.plot.line()

../../_images/pandas-DataFrame-plot-line-2.png

An example with subplots, so an array of axes is returned.

axes = df.plot.line(subplots=True) type(axes) <class 'numpy.ndarray'>

../../_images/pandas-DataFrame-plot-line-3.png

Let’s repeat the same example, but specifying colors for each column (in this case, for each animal).

axes = df.plot.line( ... subplots=True, color={"pig": "pink", "horse": "#742802"} ... )

../../_images/pandas-DataFrame-plot-line-4.png

The following example shows the relationship between both populations.

lines = df.plot.line(x='pig', y='horse')

../../_images/pandas-DataFrame-plot-line-5.png