pandas.HDFStore.put — pandas 2.2.3 documentation (original) (raw)
HDFStore.put(key, value, format=None, index=True, append=False, complib=None, complevel=None, min_itemsize=None, nan_rep=None, data_columns=None, encoding=None, errors='strict', track_times=True, dropna=False)[source]#
Store object in HDFStore.
Parameters:
keystr
value{Series, DataFrame}
format‘fixed(f)|table(t)’, default is ‘fixed’
Format to use when storing object in HDFStore. Value can be one of:
'fixed'
Fixed format. Fast writing/reading. Not-appendable, nor searchable.
'table'
Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data.
indexbool, default True
Write DataFrame index as a column.
appendbool, default False
This will force Table format, append the input data to the existing.
data_columnslist of columns or True, default None
List of columns to create as data columns, or True to use all columns. See here.
encodingstr, default None
Provide an encoding for strings.
track_timesbool, default True
Parameter is propagated to ‘create_table’ method of ‘PyTables’. If set to False it enables to have the same h5 files (same hashes) independent on creation time.
dropnabool, default False, optional
Remove missing values.
Examples
df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) store = pd.HDFStore("store.h5", 'w')
store.put('data', df)