pandas.Series.dt.to_pydatetime — pandas 2.2.3 documentation (original) (raw)
Series.dt.to_pydatetime()[source]#
Return the data as an array of datetime.datetime objects.
Deprecated since version 2.1.0: The current behavior of dt.to_pydatetime is deprecated. In a future version this will return a Series containing python datetime objects instead of a ndarray.
Timezone information is retained if present.
Warning
Python’s datetime uses microsecond resolution, which is lower than pandas (nanosecond). The values are truncated.
Returns:
numpy.ndarray
Object dtype array containing native Python datetime objects.
Examples
s = pd.Series(pd.date_range('20180310', periods=2)) s 0 2018-03-10 1 2018-03-11 dtype: datetime64[ns]
s.dt.to_pydatetime() array([datetime.datetime(2018, 3, 10, 0, 0), datetime.datetime(2018, 3, 11, 0, 0)], dtype=object)
pandas’ nanosecond precision is truncated to microseconds.
s = pd.Series(pd.date_range('20180310', periods=2, freq='ns')) s 0 2018-03-10 00:00:00.000000000 1 2018-03-10 00:00:00.000000001 dtype: datetime64[ns]
s.dt.to_pydatetime() array([datetime.datetime(2018, 3, 10, 0, 0), datetime.datetime(2018, 3, 10, 0, 0)], dtype=object)