pandas.Series.kurtosis — pandas 2.2.3 documentation (original) (raw)
Series.kurtosis(axis=0, skipna=True, numeric_only=False, **kwargs)[source]#
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
Parameters:
axis{index (0)}
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
For DataFrames, specifying axis=None
will apply the aggregation across both axes.
Added in version 2.0.0.
skipnabool, default True
Exclude NA/null values when computing the result.
numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
**kwargs
Additional keyword arguments to be passed to the function.
Returns:
scalar or scalar
Examples
s = pd.Series([1, 2, 2, 3], index=['cat', 'dog', 'dog', 'mouse']) s cat 1 dog 2 dog 2 mouse 3 dtype: int64 s.kurt() 1.5
With a DataFrame
df = pd.DataFrame({'a': [1, 2, 2, 3], 'b': [3, 4, 4, 4]}, ... index=['cat', 'dog', 'dog', 'mouse']) df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 df.kurt() a 1.5 b 4.0 dtype: float64
With axis=None
df.kurt(axis=None).round(6) -0.988693
Using axis=1
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [3, 4], 'd': [1, 2]}, ... index=['cat', 'dog']) df.kurt(axis=1) cat -6.0 dog -6.0 dtype: float64