pandas.Series.mean — pandas 2.2.3 documentation (original) (raw)
Series.mean(axis=0, skipna=True, numeric_only=False, **kwargs)[source]#
Return the mean of the values over the requested axis.
Parameters:
axis{index (0)}
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
For DataFrames, specifying axis=None
will apply the aggregation across both axes.
Added in version 2.0.0.
skipnabool, default True
Exclude NA/null values when computing the result.
numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
**kwargs
Additional keyword arguments to be passed to the function.
Returns:
scalar or scalar
Examples
s = pd.Series([1, 2, 3]) s.mean() 2.0
With a DataFrame
df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) df a b tiger 1 2 zebra 2 3 df.mean() a 1.5 b 2.5 dtype: float64
Using axis=1
df.mean(axis=1) tiger 1.5 zebra 2.5 dtype: float64
In this case, numeric_only should be set to True to avoid getting an error.
df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) df.mean(numeric_only=True) a 1.5 dtype: float64