pandas.Series.rank — pandas 2.2.3 documentation (original) (raw)
Series.rank(axis=0, method='average', numeric_only=False, na_option='keep', ascending=True, pct=False)[source]#
Compute numerical data ranks (1 through n) along axis.
By default, equal values are assigned a rank that is the average of the ranks of those values.
Parameters:
axis{0 or ‘index’, 1 or ‘columns’}, default 0
Index to direct ranking. For Series this parameter is unused and defaults to 0.
method{‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’
How to rank the group of records that have the same value (i.e. ties):
- average: average rank of the group
- min: lowest rank in the group
- max: highest rank in the group
- first: ranks assigned in order they appear in the array
- dense: like ‘min’, but rank always increases by 1 between groups.
numeric_onlybool, default False
For DataFrame objects, rank only numeric columns if set to True.
Changed in version 2.0.0: The default value of numeric_only
is now False
.
na_option{‘keep’, ‘top’, ‘bottom’}, default ‘keep’
How to rank NaN values:
- keep: assign NaN rank to NaN values
- top: assign lowest rank to NaN values
- bottom: assign highest rank to NaN values
ascendingbool, default True
Whether or not the elements should be ranked in ascending order.
pctbool, default False
Whether or not to display the returned rankings in percentile form.
Returns:
same type as caller
Return a Series or DataFrame with data ranks as values.
Examples
df = pd.DataFrame(data={'Animal': ['cat', 'penguin', 'dog', ... 'spider', 'snake'], ... 'Number_legs': [4, 2, 4, 8, np.nan]}) df Animal Number_legs 0 cat 4.0 1 penguin 2.0 2 dog 4.0 3 spider 8.0 4 snake NaN
Ties are assigned the mean of the ranks (by default) for the group.
s = pd.Series(range(5), index=list("abcde")) s["d"] = s["b"] s.rank() a 1.0 b 2.5 c 4.0 d 2.5 e 5.0 dtype: float64
The following example shows how the method behaves with the above parameters:
- default_rank: this is the default behaviour obtained without using any parameter.
- max_rank: setting
method = 'max'
the records that have the same values are ranked using the highest rank (e.g.: since ‘cat’ and ‘dog’ are both in the 2nd and 3rd position, rank 3 is assigned.) - NA_bottom: choosing
na_option = 'bottom'
, if there are records with NaN values they are placed at the bottom of the ranking. - pct_rank: when setting
pct = True
, the ranking is expressed as percentile rank.
df['default_rank'] = df['Number_legs'].rank() df['max_rank'] = df['Number_legs'].rank(method='max') df['NA_bottom'] = df['Number_legs'].rank(na_option='bottom') df['pct_rank'] = df['Number_legs'].rank(pct=True) df Animal Number_legs default_rank max_rank NA_bottom pct_rank 0 cat 4.0 2.5 3.0 2.5 0.625 1 penguin 2.0 1.0 1.0 1.0 0.250 2 dog 4.0 2.5 3.0 2.5 0.625 3 spider 8.0 4.0 4.0 4.0 1.000 4 snake NaN NaN NaN 5.0 NaN