pandas.core.window.rolling.Rolling.var — pandas 2.3.3 documentation (original) (raw)
Rolling.var(ddof=1, numeric_only=False, engine=None, engine_kwargs=None)[source]#
Calculate the rolling variance.
Parameters:
ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
numeric_onlybool, default False
Include only float, int, boolean columns.
Added in version 1.5.0.
enginestr, default None
'cython': Runs the operation through C-extensions from cython.'numba': Runs the operation through JIT compiled code from numba.None: Defaults to'cython'or globally settingcompute.use_numba
Added in version 1.4.0.
engine_kwargsdict, default None
- For
'cython'engine, there are no acceptedengine_kwargs - For
'numba'engine, the engine can acceptnopython,nogilandparalleldictionary keys. The values must either beTrueorFalse. The defaultengine_kwargsfor the'numba'engine is{'nopython': True, 'nogil': False, 'parallel': False}
Added in version 1.4.0.
Returns:
Series or DataFrame
Return type is the same as the original object with np.float64 dtype.
Notes
The default ddof of 1 used in Series.var() is different than the default ddof of 0 in numpy.var().
A minimum of one period is required for the rolling calculation.
Examples
s = pd.Series([5, 5, 6, 7, 5, 5, 5]) s.rolling(3).var() 0 NaN 1 NaN 2 0.333333 3 1.000000 4 1.000000 5 1.333333 6 0.000000 dtype: float64