pandas.io.formats.style.Styler.highlight_quantile — pandas 2.2.3 documentation (original) (raw)
Styler.highlight_quantile(subset=None, color='yellow', axis=0, q_left=0.0, q_right=1.0, interpolation='linear', inclusive='both', props=None)[source]#
Highlight values defined by a quantile with a style.
Added in version 1.3.0.
Parameters:
subsetlabel, array-like, IndexSlice, optional
A valid 2d input to DataFrame.loc[], or, in the case of a 1d input or single key, to DataFrame.loc[:, ] where the columns are prioritised, to limit data
to before applying the function.
colorstr, default ‘yellow’
Background color to use for highlighting.
axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Axis along which to determine and highlight quantiles. If None
quantiles are measured over the entire DataFrame. See examples.
q_leftfloat, default 0
Left bound, in [0, q_right), for the target quantile range.
q_rightfloat, default 1
Right bound, in (q_left, 1], for the target quantile range.
interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
Argument passed to Series.quantile
or DataFrame.quantile
for quantile estimation.
inclusive{‘both’, ‘neither’, ‘left’, ‘right’}
Identify whether quantile bounds are closed or open.
propsstr, default None
CSS properties to use for highlighting. If props
is given, color
is not used.
Returns:
Styler
Notes
This function does not work with str
dtypes.
Examples
Using axis=None
and apply a quantile to all collective data
df = pd.DataFrame(np.arange(10).reshape(2,5) + 1) df.style.highlight_quantile(axis=None, q_left=0.8, color="#fffd75") ...
Or highlight quantiles row-wise or column-wise, in this case by row-wise
df.style.highlight_quantile(axis=1, q_left=0.8, color="#fffd75") ...
Use props
instead of default background coloring
df.style.highlight_quantile(axis=None, q_left=0.2, q_right=0.8, ... props='font-weight:bold;color:#e83e8c')