Nullable Boolean data type — pandas 2.3.3 documentation (original) (raw)
Note
BooleanArray is currently experimental. Its API or implementation may change without warning.
Indexing with NA values#
pandas allows indexing with NA values in a boolean array, which are treated as False.
In [1]: s = pd.Series([1, 2, 3])
In [2]: mask = pd.array([True, False, pd.NA], dtype="boolean")
In [3]: s[mask] Out[3]: 0 1 dtype: int64
If you would prefer to keep the NA values you can manually fill them with fillna(True).
In [4]: s[mask.fillna(True)] Out[4]: 0 1 2 3 dtype: int64
Kleene logical operations#
arrays.BooleanArray implements Kleene Logic (sometimes called three-value logic) for logical operations like & (and), | (or) and ^ (exclusive-or).
This table demonstrates the results for every combination. These operations are symmetrical, so flipping the left- and right-hand side makes no difference in the result.
| Expression | Result |
|---|---|
| True & True | True |
| True & False | False |
| True & NA | NA |
| False & False | False |
| False & NA | False |
| NA & NA | NA |
| True | True | True |
| True | False | True |
| True | NA | True |
| False | False | False |
| False | NA | NA |
| NA | NA | NA |
| True ^ True | False |
| True ^ False | True |
| True ^ NA | NA |
| False ^ False | False |
| False ^ NA | NA |
| NA ^ NA | NA |
When an NA is present in an operation, the output value is NA only if the result cannot be determined solely based on the other input. For example,True | NA is True, because both True | True and True | Falseare True. In that case, we don’t actually need to consider the value of the NA.
On the other hand, True & NA is NA. The result depends on whether the NA really is True or False, since True & True is True, but True & False is False, so we can’t determine the output.
This differs from how np.nan behaves in logical operations. pandas treatednp.nan is always false in the output.
In or
In [5]: pd.Series([True, False, np.nan], dtype="object") | True Out[5]: 0 True 1 True 2 False dtype: bool
In [6]: pd.Series([True, False, np.nan], dtype="boolean") | True Out[6]: 0 True 1 True 2 True dtype: boolean
In and
In [7]: pd.Series([True, False, np.nan], dtype="object") & True Out[7]: 0 True 1 False 2 False dtype: bool
In [8]: pd.Series([True, False, np.nan], dtype="boolean") & True Out[8]: 0 True 1 False 2 dtype: boolean