pandas.DataFrame.notnull — pandas 3.0.0rc0+33.g1fd184de2a documentation (original) (raw)
DataFrame.notnull is an alias for DataFrame.notna.
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values. NA values, such as None or numpy.NaN, get mapped to False values.
Returns:
Series/DataFrame
Mask of bool values for each element in Series/DataFrame that indicates whether an element is not an NA value.
Examples
Show which entries in a DataFrame are not NA.
df = pd.DataFrame( ... dict( ... age=[5, 6, np.nan], ... born=[ ... pd.NaT, ... pd.Timestamp("1939-05-27"), ... pd.Timestamp("1940-04-25"), ... ], ... name=["Alfred", "Batman", ""], ... toy=[None, "Batmobile", "Joker"], ... ) ... ) df age born name toy 0 5.0 NaT Alfred NaN 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
ser = pd.Series([5, 6, np.nan]) ser 0 5.0 1 6.0 2 NaN dtype: float64
ser.notna() 0 True 1 True 2 False dtype: bool