pandas.DataFrame.rename — pandas 3.0.0rc0+31.g944c527c0a documentation (original) (raw)
DataFrame.rename(mapper=None, *, index=None, columns=None, axis=None, copy=<no_default>, inplace=False, level=None, errors='ignore')[source]#
Rename columns or index labels.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
See the user guide for more.
Parameters:
mapperdict-like or function
Dict-like or function transformations to apply to that axis’ values. Use either mapper and axis to specify the axis to target with mapper, or index andcolumns.
indexdict-like or function
Alternative to specifying axis (mapper, axis=0is equivalent to index=mapper).
columnsdict-like or function
Alternative to specifying axis (mapper, axis=1is equivalent to columns=mapper).
axis{0 or ‘index’, 1 or ‘columns’}, default 0
Axis to target with mapper. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’.
copybool, default False
This keyword is now ignored; changing its value will have no impact on the method.
Deprecated since version 3.0.0: This keyword is ignored and will be removed in pandas 4.0. Since pandas 3.0, this method always returns a new object using a lazy copy mechanism that defers copies until necessary (Copy-on-Write). See the user guide on Copy-on-Writefor more details.
inplacebool, default False
Whether to modify the DataFrame rather than creating a new one. If True then value of copy is ignored.
levelint or level name, default None
In case of a MultiIndex, only rename labels in the specified level.
errors{‘ignore’, ‘raise’}, default ‘ignore’
If ‘raise’, raise a KeyError when a dict-like mapper, index, or columns contains labels that are not present in the Index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored.
Returns:
DataFrame or None
DataFrame with the renamed axis labels or None if inplace=True.
Raises:
KeyError
If any of the labels is not found in the selected axis and “errors=’raise’”.
Examples
DataFrame.rename supports two calling conventions
(index=index_mapper, columns=columns_mapper, ...)(mapper, axis={'index', 'columns'}, ...)
We highly recommend using keyword arguments to clarify your intent.
Rename columns using a mapping:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6
Rename index using a mapping:
df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6
Cast index labels to a different type:
df.index RangeIndex(start=0, stop=3, step=1) df.rename(index=str).index Index(['0', '1', '2'], dtype='object')
df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis
Using axis-style parameters:
df.rename(str.lower, axis="columns") a b 0 1 4 1 2 5 2 3 6
df.rename({1: 2, 2: 4}, axis="index") A B 0 1 4 2 2 5 4 3 6