pandas.DataFrame.sort_values — pandas 3.0.0.dev0+2103.g41968a550a documentation (original) (raw)

DataFrame.sort_values(by, *, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)[source]#

Sort by the values along either axis.

Parameters:

bystr or list of str

Name or list of names to sort by.

axis“{0 or ‘index’, 1 or ‘columns’}”, default 0

Axis to be sorted.

ascendingbool or list of bool, default True

Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.

inplacebool, default False

If True, perform operation in-place.

kind{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, default ‘quicksort’

Choice of sorting algorithm. See also numpy.sort() for more information. mergesort and stable are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label.

na_position{‘first’, ‘last’}, default ‘last’

Puts NaNs at the beginning if first; last puts NaNs at the end.

ignore_indexbool, default False

If True, the resulting axis will be labeled 0, 1, …, n - 1.

keycallable, optional

Apply the key function to the values before sorting. This is similar to the key argument in the builtin sorted() function, with the notable difference that this key function should be vectorized. It should expect aSeries and return a Series with the same shape as the input. It will be applied to each column in by independently. The values in the returned Series will be used as the keys for sorting.

Returns:

DataFrame or None

DataFrame with sorted values or None if inplace=True.

Examples

df = pd.DataFrame( ... { ... "col1": ["A", "A", "B", np.nan, "D", "C"], ... "col2": [2, 1, 9, 8, 7, 4], ... "col3": [0, 1, 9, 4, 2, 3], ... "col4": ["a", "B", "c", "D", "e", "F"], ... } ... ) df col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F

Sort by a single column

In this case, we are sorting the rows according to values in col1:

df.sort_values(by=["col1"]) col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 NaN 8 4 D

Sort by multiple columns

You can also provide multiple columns to by argument, as shown below. In this example, the rows are first sorted according to col1, and then the rows that have an identical value in col1 are sorted according to col2.

df.sort_values(by=["col1", "col2"]) col1 col2 col3 col4 1 A 1 1 B 0 A 2 0 a 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 NaN 8 4 D

Sort in a descending order

The sort order can be reversed using ascending argument, as shown below:

df.sort_values(by="col1", ascending=False) col1 col2 col3 col4 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B 3 NaN 8 4 D

Placing any NA first

Note that in the above example, the rows that contain an NA value in theircol1 are placed at the end of the dataframe. This behavior can be modified via na_position argument, as shown below:

df.sort_values(by="col1", ascending=False, na_position="first") col1 col2 col3 col4 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B

Customized sort order

The key argument allows for a further customization of sorting behaviour. For example, you may want to ignore the letter’s casewhen sorting strings:

df.sort_values(by="col4", key=lambda col: col.str.lower()) col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F

Another typical example isnatural sorting. This can be done usingnatsort package, which provides sorted indices according to their natural order, as shown below:

df = pd.DataFrame( ... { ... "time": ["0hr", "128hr", "72hr", "48hr", "96hr"], ... "value": [10, 20, 30, 40, 50], ... } ... ) df time value 0 0hr 10 1 128hr 20 2 72hr 30 3 48hr 40 4 96hr 50 from natsort import index_natsorted index_natsorted(df["time"]) [0, 3, 2, 4, 1] df.sort_values( ... by="time", ... key=lambda x: np.argsort(index_natsorted(x)), ... ) time value 0 0hr 10 3 48hr 40 2 72hr 30 4 96hr 50 1 128hr 20