pandas.SparseDtype — pandas 3.0.0.dev0+2103.g41968a550a documentation (original) (raw)
class pandas.SparseDtype(dtype=<class 'numpy.float64'>, fill_value=None)[source]#
Dtype for data stored in SparseArray
.
SparseDtype
is used as the data type for SparseArray
, enabling more efficient storage of data that contains a significant number of repetitive values typically represented by a fill value. It supports any scalar dtype as the underlying data type of the non-fill values.
Parameters:
dtypestr, ExtensionDtype, numpy.dtype, type, default numpy.float64
The dtype of the underlying array storing the non-fill value values.
fill_valuescalar, optional
The scalar value not stored in the SparseArray. By default, this depends on dtype
.
The default value may be overridden by specifying a fill_value
.
Attributes
Methods
See also
The array structure that uses SparseDtype for data representation.
Examples
ser = pd.Series([1, 0, 0], dtype=pd.SparseDtype(dtype=int, fill_value=0)) ser 0 1 1 0 2 0 dtype: Sparse[int64, 0] ser.sparse.density 0.3333333333333333