pandas.api.typing.DataFrameGroupBy.idxmin — pandas 3.0.0rc0+33.g1fd184de2a documentation (original) (raw)

DataFrameGroupBy.idxmin(skipna=True, numeric_only=False)[source]#

Return index of first occurrence of minimum in each group.

Parameters:

skipnabool, default True

Exclude NA values.

numeric_onlybool, default False

Include only float, int or boolean data.

Returns:

DataFrame

Indexes of minima in each column according to the group.

Raises:

ValueError

When there are no valid values for a group. Then can happen if:

Changed in version 3.0.0: Previously if all values for a group are NA or some values for a group are NA and skipna=False, this method would return NA. Now it raises instead.

See also

Series.idxmin

Return index of the minimum element.

DataFrame.idxmin

Indexes of minima along the specified axis.

Notes

This method is the DataFrame version of ndarray.argmin.

Examples

Consider a dataset containing food consumption in Argentina.

df = pd.DataFrame( ... { ... "consumption": [10.51, 103.11, 55.48], ... "co2_emissions": [37.2, 19.66, 1712], ... "food_type": ["meat", "plant", "meat"], ... }, ... index=["Pork", "Wheat Products", "Beef"], ... )

df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00

By default, it returns the index for the minimum value in each column according to the group.

df.groupby("food_type").idxmin() consumption co2_emissions food_type animal Pork Pork plant Wheat Products Wheat Products