pandas.api.typing.SeriesGroupBy.min — pandas 3.0.0rc0+33.g1fd184de2a documentation (original) (raw)
SeriesGroupBy.min(numeric_only=False, min_count=-1, skipna=True, engine=None, engine_kwargs=None)[source]#
Compute min of group values.
Parameters:
numeric_onlybool, default False
Include only float, int, boolean columns.
Changed in version 2.0.0: numeric_only no longer accepts None.
min_countint, default -1
The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.
skipnabool, default True
Exclude NA/null values. If the entire group is NA and skipna isTrue, the result will be NA.
Changed in version 3.0.0.
enginestr, default None None
'cython': Runs rolling apply through C-extensions from cython.'numba'Runs rolling apply through JIT compiled code from numba.
Only available whenrawis set toTrue.None: Defaults to'cython'or globally settingcompute.use_numba
engine_kwargsdict, default None None
- For
'cython'engine, there are no acceptedengine_kwargs - For
'numba'engine, the engine can acceptnopython,nogil
andparalleldictionary keys. The values must either beTrueorFalse. The defaultengine_kwargsfor the'numba'engine is{'nopython': True, 'nogil': False, 'parallel': False}and will be applied to both thefuncand theapplygroupby aggregation.
Returns:
Series or DataFrame
Computed min of values within each group.
Examples
For SeriesGroupBy:
lst = ['a', 'a', 'b', 'b'] ser = pd.Series([1, 2, 3, 4], index=lst) ser a 1 a 2 b 3 b 4 dtype: int64 ser.groupby(level=0).min() a 1 b 3 dtype: int64
For DataFrameGroupBy:
data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] df = pd.DataFrame(data, columns=["a", "b", "c"], ... index=["tiger", "leopard", "cheetah", "lion"]) df a b c tiger 1 8 2 leopard 1 2 5 cheetah 2 5 8 lion 2 6 9 df.groupby("a").min() b c a 1 2 2 2 5 8