pandas.Categorical.categories — pandas 2.2.3 documentation (original) (raw)

property Categorical.categories[source]#

The categories of this categorical.

Setting assigns new values to each category (effectively a rename of each individual category).

The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories.

Raises:

ValueError

If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories

See also

rename_categories

Rename categories.

reorder_categories

Reorder categories.

add_categories

Add new categories.

remove_categories

Remove the specified categories.

remove_unused_categories

Remove categories which are not used.

set_categories

Set the categories to the specified ones.

Examples

For pandas.Series:

ser = pd.Series(['a', 'b', 'c', 'a'], dtype='category') ser.cat.categories Index(['a', 'b', 'c'], dtype='object')

raw_cat = pd.Categorical(['a', 'b', 'c', 'a'], categories=['b', 'c', 'd']) ser = pd.Series(raw_cat) ser.cat.categories Index(['b', 'c', 'd'], dtype='object')

For pandas.Categorical:

cat = pd.Categorical(['a', 'b'], ordered=True) cat.categories Index(['a', 'b'], dtype='object')

For pandas.CategoricalIndex:

ci = pd.CategoricalIndex(['a', 'c', 'b', 'a', 'c', 'b']) ci.categories Index(['a', 'b', 'c'], dtype='object')

ci = pd.CategoricalIndex(['a', 'c'], categories=['c', 'b', 'a']) ci.categories Index(['c', 'b', 'a'], dtype='object')