pandas.DataFrame.corrwith — pandas 2.2.3 documentation (original) (raw)
DataFrame.corrwith(other, axis=0, drop=False, method='pearson', numeric_only=False)[source]#
Compute pairwise correlation.
Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations.
Parameters:
otherDataFrame, Series
Object with which to compute correlations.
axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to use. 0 or ‘index’ to compute row-wise, 1 or ‘columns’ for column-wise.
dropbool, default False
Drop missing indices from result.
method{‘pearson’, ‘kendall’, ‘spearman’} or callable
Method of correlation:
- pearson : standard correlation coefficient
- kendall : Kendall Tau correlation coefficient
- spearman : Spearman rank correlation
- callable: callable with input two 1d ndarrays
and returning a float.
numeric_onlybool, default False
Include only float, int or boolean data.
Added in version 1.5.0.
Changed in version 2.0.0: The default value of numeric_only
is now False
.
Returns:
Series
Pairwise correlations.
Examples
index = ["a", "b", "c", "d", "e"] columns = ["one", "two", "three", "four"] df1 = pd.DataFrame(np.arange(20).reshape(5, 4), index=index, columns=columns) df2 = pd.DataFrame(np.arange(16).reshape(4, 4), index=index[:4], columns=columns) df1.corrwith(df2) one 1.0 two 1.0 three 1.0 four 1.0 dtype: float64
df2.corrwith(df1, axis=1) a 1.0 b 1.0 c 1.0 d 1.0 e NaN dtype: float64