pandas.DataFrame.corrwith — pandas 2.2.3 documentation (original) (raw)

DataFrame.corrwith(other, axis=0, drop=False, method='pearson', numeric_only=False)[source]#

Compute pairwise correlation.

Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations.

Parameters:

otherDataFrame, Series

Object with which to compute correlations.

axis{0 or ‘index’, 1 or ‘columns’}, default 0

The axis to use. 0 or ‘index’ to compute row-wise, 1 or ‘columns’ for column-wise.

dropbool, default False

Drop missing indices from result.

method{‘pearson’, ‘kendall’, ‘spearman’} or callable

Method of correlation:

numeric_onlybool, default False

Include only float, int or boolean data.

Added in version 1.5.0.

Changed in version 2.0.0: The default value of numeric_only is now False.

Returns:

Series

Pairwise correlations.

Examples

index = ["a", "b", "c", "d", "e"] columns = ["one", "two", "three", "four"] df1 = pd.DataFrame(np.arange(20).reshape(5, 4), index=index, columns=columns) df2 = pd.DataFrame(np.arange(16).reshape(4, 4), index=index[:4], columns=columns) df1.corrwith(df2) one 1.0 two 1.0 three 1.0 four 1.0 dtype: float64

df2.corrwith(df1, axis=1) a 1.0 b 1.0 c 1.0 d 1.0 e NaN dtype: float64