pandas.DataFrame.to_dict — pandas 2.2.3 documentation (original) (raw)
DataFrame.to_dict(orient='dict', *, into=<class 'dict'>, index=True)[source]#
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters (see below).
Parameters:
orientstr {‘dict’, ‘list’, ‘series’, ‘split’, ‘tight’, ‘records’, ‘index’}
Determines the type of the values of the dictionary.
- ‘dict’ (default) : dict like {column -> {index -> value}}
- ‘list’ : dict like {column -> [values]}
- ‘series’ : dict like {column -> Series(values)}
- ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
- ‘tight’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values], ‘index_names’ -> [index.names], ‘column_names’ -> [column.names]}
- ‘records’ : list like [{column -> value}, … , {column -> value}]
- ‘index’ : dict like {index -> {column -> value}}
Added in version 1.4.0: ‘tight’ as an allowed value for the orient
argument
intoclass, default dict
The collections.abc.MutableMapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized.
indexbool, default True
Whether to include the index item (and index_names item if orientis ‘tight’) in the returned dictionary. Can only be False
when orient is ‘split’ or ‘tight’.
Added in version 2.0.0.
Returns:
dict, list or collections.abc.MutableMapping
Return a collections.abc.MutableMapping object representing the DataFrame. The resulting transformation depends on the orientparameter.
Examples
df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) df col1 col2 row1 1 0.50 row2 2 0.75 df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can specify the return orientation.
df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64}
df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]}
df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
df.to_dict('tight') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]], 'index_names': [None], 'column_names': [None]}
You can also specify the mapping type.
from collections import OrderedDict, defaultdict df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
If you want a defaultdict, you need to initialize it:
dd = defaultdict(list) df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]