pandas.Series.cummin — pandas 2.2.3 documentation (original) (raw)
Series.cummin(axis=None, skipna=True, *args, **kwargs)[source]#
Return cumulative minimum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative minimum.
Parameters:
axis{0 or ‘index’, 1 or ‘columns’}, default 0
The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0.
skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
*args, **kwargs
Additional keywords have no effect but might be accepted for compatibility with NumPy.
Returns:
scalar or Series
Return cumulative minimum of scalar or Series.
Examples
Series
s = pd.Series([2, np.nan, 5, -1, 0]) s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64
By default, NA values are ignored.
s.cummin() 0 2.0 1 NaN 2 2.0 3 -1.0 4 -1.0 dtype: float64
To include NA values in the operation, use skipna=False
s.cummin(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
DataFrame
df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0
By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None
or axis='index'
.
df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0
To iterate over columns and find the minimum in each row, use axis=1
df.cummin(axis=1) A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0