pandas.Series.describe — pandas 2.2.3 documentation (original) (raw)

Series.describe(percentiles=None, include=None, exclude=None)[source]#

Generate descriptive statistics.

Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.

Parameters:

percentileslist-like of numbers, optional

The percentiles to include in the output. All should fall between 0 and 1. The default is[.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

include‘all’, list-like of dtypes or None (default), optional

A white list of data types to include in the result. Ignored for Series. Here are the options:

excludelist-like of dtypes or None (default), optional,

A black list of data types to omit from the result. Ignored for Series. Here are the options:

Returns:

Series or DataFrame

Summary statistics of the Series or Dataframe provided.

Notes

For numeric data, the result’s index will include count,mean, std, min, max as well as lower, 50 and upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and freq. The topis the most common value. The freq is the most common value’s frequency. Timestamps also include the first and last items.

If multiple object values have the highest count, then thecount and top results will be arbitrarily chosen from among those with the highest count.

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. If include='all' is provided as an option, the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed for the output. The parameters are ignored when analyzing a Series.

Examples

Describing a numeric Series.

s = pd.Series([1, 2, 3]) s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 dtype: float64

Describing a categorical Series.

s = pd.Series(['a', 'a', 'b', 'c']) s.describe() count 4 unique 3 top a freq 2 dtype: object

Describing a timestamp Series.

s = pd.Series([ ... np.datetime64("2000-01-01"), ... np.datetime64("2010-01-01"), ... np.datetime64("2010-01-01") ... ]) s.describe() count 3 mean 2006-09-01 08:00:00 min 2000-01-01 00:00:00 25% 2004-12-31 12:00:00 50% 2010-01-01 00:00:00 75% 2010-01-01 00:00:00 max 2010-01-01 00:00:00 dtype: object

Describing a DataFrame. By default only numeric fields are returned.

df = pd.DataFrame({'categorical': pd.Categorical(['d', 'e', 'f']), ... 'numeric': [1, 2, 3], ... 'object': ['a', 'b', 'c'] ... }) df.describe() numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0

Describing all columns of a DataFrame regardless of data type.

df.describe(include='all')
categorical numeric object count 3 3.0 3 unique 3 NaN 3 top f NaN a freq 1 NaN 1 mean NaN 2.0 NaN std NaN 1.0 NaN min NaN 1.0 NaN 25% NaN 1.5 NaN 50% NaN 2.0 NaN 75% NaN 2.5 NaN max NaN 3.0 NaN

Describing a column from a DataFrame by accessing it as an attribute.

df.numeric.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Name: numeric, dtype: float64

Including only numeric columns in a DataFrame description.

df.describe(include=[np.number]) numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0

Including only string columns in a DataFrame description.

df.describe(include=[object])
object count 3 unique 3 top a freq 1

Including only categorical columns from a DataFrame description.

df.describe(include=['category']) categorical count 3 unique 3 top d freq 1

Excluding numeric columns from a DataFrame description.

df.describe(exclude=[np.number])
categorical object count 3 3 unique 3 3 top f a freq 1 1

Excluding object columns from a DataFrame description.

df.describe(exclude=[object])
categorical numeric count 3 3.0 unique 3 NaN top f NaN freq 1 NaN mean NaN 2.0 std NaN 1.0 min NaN 1.0 25% NaN 1.5 50% NaN 2.0 75% NaN 2.5 max NaN 3.0