pandas.Series.isna — pandas 2.2.3 documentation (original) (raw)
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN
, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings ''
or numpy.inf
are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True
).
Returns:
Series
Mask of bool values for each element in Series that indicates whether an element is an NA value.
Examples
Show which entries in a DataFrame are NA.
df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False
Show which entries in a Series are NA.
ser = pd.Series([5, 6, np.nan]) ser 0 5.0 1 6.0 2 NaN dtype: float64
ser.isna() 0 False 1 False 2 True dtype: bool