pandas.Series.unique — pandas 2.2.3 documentation (original) (raw)
Return unique values of Series object.
Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort.
Returns:
ndarray or ExtensionArray
The unique values returned as a NumPy array. See Notes.
See also
Return Series with duplicate values removed.
Top-level unique method for any 1-d array-like object.
Return Index with unique values from an Index object.
Notes
Returns the unique values as a NumPy array. In case of an extension-array backed Series, a newExtensionArray of that type with just the unique values is returned. This includes
- Categorical
- Period
- Datetime with Timezone
- Datetime without Timezone
- Timedelta
- Interval
- Sparse
- IntegerNA
See Examples section.
Examples
pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3])
pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() ['2016-01-01 00:00:00'] Length: 1, dtype: datetime64[ns]
pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern]
An Categorical will return categories in the order of appearance and with the same dtype.
pd.Series(pd.Categorical(list('baabc'))).unique() ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c']