pandas.TimedeltaIndex — pandas 2.2.3 documentation (original) (raw)
class pandas.TimedeltaIndex(data=None, unit=<no_default>, freq=<no_default>, closed=<no_default>, dtype=None, copy=False, name=None)[source]#
Immutable Index of timedelta64 data.
Represented internally as int64, and scalars returned Timedelta objects.
Parameters:
dataarray-like (1-dimensional), optional
Optional timedelta-like data to construct index with.
unit{‘D’, ‘h’, ‘m’, ‘s’, ‘ms’, ‘us’, ‘ns’}, optional
The unit of data
.
Deprecated since version 2.2.0: Use pd.to_timedelta
instead.
freqstr or pandas offset object, optional
One of pandas date offset strings or corresponding objects. The string'infer'
can be passed in order to set the frequency of the index as the inferred frequency upon creation.
dtypenumpy.dtype or str, default None
Valid numpy
dtypes are timedelta64[ns]
, timedelta64[us]
,timedelta64[ms]
, and timedelta64[s]
.
copybool
Make a copy of input array.
nameobject
Name to be stored in the index.
Attributes
days | Number of days for each element. |
---|---|
seconds | Number of seconds (>= 0 and less than 1 day) for each element. |
microseconds | Number of microseconds (>= 0 and less than 1 second) for each element. |
nanoseconds | Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. |
components | Return a DataFrame of the individual resolution components of the Timedeltas. |
inferred_freq | Tries to return a string representing a frequency generated by infer_freq. |
Methods
to_pytimedelta(*args, **kwargs) | Return an ndarray of datetime.timedelta objects. |
---|---|
to_series([index, name]) | Create a Series with both index and values equal to the index keys. |
round(*args, **kwargs) | Perform round operation on the data to the specified freq. |
floor(*args, **kwargs) | Perform floor operation on the data to the specified freq. |
ceil(*args, **kwargs) | Perform ceil operation on the data to the specified freq. |
to_frame([index, name]) | Create a DataFrame with a column containing the Index. |
mean(*[, skipna, axis]) | Return the mean value of the Array. |
Notes
To learn more about the frequency strings, please see this link.
Examples
pd.TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days']) TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)
We can also let pandas infer the frequency when possible.
pd.TimedeltaIndex(np.arange(5) * 24 * 3600 * 1e9, freq='infer') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq='D')