pandas.isna — pandas 2.2.3 documentation (original) (raw)
Detect missing values for an array-like object.
This function takes a scalar or array-like object and indicates whether values are missing (NaN
in numeric arrays, None
or NaN
in object arrays, NaT
in datetimelike).
Parameters:
objscalar or array-like
Object to check for null or missing values.
Returns:
bool or array-like of bool
For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is missing.
Examples
Scalar arguments (including strings) result in a scalar boolean.
ndarrays result in an ndarray of booleans.
array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) array array([[ 1., nan, 3.], [ 4., 5., nan]]) pd.isna(array) array([[False, True, False], [False, False, True]])
For indexes, an ndarray of booleans is returned.
index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, ... "2017-07-08"]) index DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None) pd.isna(index) array([False, False, True, False])
For Series and DataFrame, the same type is returned, containing booleans.
df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) df 0 1 2 0 ant bee cat 1 dog None fly pd.isna(df) 0 1 2 0 False False False 1 False True False
pd.isna(df[1]) 0 False 1 True Name: 1, dtype: bool