GroupBy — pandas 2.2.3 documentation (original) (raw)
pandas.api.typing.DataFrameGroupBy
and pandas.api.typing.SeriesGroupBy
instances are returned by groupby calls pandas.DataFrame.groupby() andpandas.Series.groupby() respectively.
Indexing, iteration#
DataFrameGroupBy.__iter__() | Groupby iterator. |
---|---|
SeriesGroupBy.__iter__() | Groupby iterator. |
DataFrameGroupBy.groups | Dict {group name -> group labels}. |
SeriesGroupBy.groups | Dict {group name -> group labels}. |
DataFrameGroupBy.indices | Dict {group name -> group indices}. |
SeriesGroupBy.indices | Dict {group name -> group indices}. |
DataFrameGroupBy.get_group(name[, obj]) | Construct DataFrame from group with provided name. |
SeriesGroupBy.get_group(name[, obj]) | Construct DataFrame from group with provided name. |
Grouper(*args, **kwargs) | A Grouper allows the user to specify a groupby instruction for an object. |
---|
Function application helper#
NamedAgg(column, aggfunc) | Helper for column specific aggregation with control over output column names. |
---|
Function application#
SeriesGroupBy.apply(func, *args, **kwargs) | Apply function func group-wise and combine the results together. |
---|---|
DataFrameGroupBy.apply(func, *args[, ...]) | Apply function func group-wise and combine the results together. |
SeriesGroupBy.agg([func, engine, engine_kwargs]) | Aggregate using one or more operations over the specified axis. |
DataFrameGroupBy.agg([func, engine, ...]) | Aggregate using one or more operations over the specified axis. |
SeriesGroupBy.aggregate([func, engine, ...]) | Aggregate using one or more operations over the specified axis. |
DataFrameGroupBy.aggregate([func, engine, ...]) | Aggregate using one or more operations over the specified axis. |
SeriesGroupBy.transform(func, *args[, ...]) | Call function producing a same-indexed Series on each group. |
DataFrameGroupBy.transform(func, *args[, ...]) | Call function producing a same-indexed DataFrame on each group. |
SeriesGroupBy.pipe(func, *args, **kwargs) | Apply a func with arguments to this GroupBy object and return its result. |
DataFrameGroupBy.pipe(func, *args, **kwargs) | Apply a func with arguments to this GroupBy object and return its result. |
DataFrameGroupBy.filter(func[, dropna]) | Filter elements from groups that don't satisfy a criterion. |
SeriesGroupBy.filter(func[, dropna]) | Filter elements from groups that don't satisfy a criterion. |
DataFrameGroupBy
computations / descriptive stats#
DataFrameGroupBy.all([skipna]) | Return True if all values in the group are truthful, else False. |
---|---|
DataFrameGroupBy.any([skipna]) | Return True if any value in the group is truthful, else False. |
DataFrameGroupBy.bfill([limit]) | Backward fill the values. |
DataFrameGroupBy.corr([method, min_periods, ...]) | Compute pairwise correlation of columns, excluding NA/null values. |
DataFrameGroupBy.corrwith(other[, axis, ...]) | Compute pairwise correlation. |
DataFrameGroupBy.count() | Compute count of group, excluding missing values. |
DataFrameGroupBy.cov([min_periods, ddof, ...]) | Compute pairwise covariance of columns, excluding NA/null values. |
DataFrameGroupBy.cumcount([ascending]) | Number each item in each group from 0 to the length of that group - 1. |
DataFrameGroupBy.cummax([axis, numeric_only]) | Cumulative max for each group. |
DataFrameGroupBy.cummin([axis, numeric_only]) | Cumulative min for each group. |
DataFrameGroupBy.cumprod([axis]) | Cumulative product for each group. |
DataFrameGroupBy.cumsum([axis]) | Cumulative sum for each group. |
DataFrameGroupBy.describe([percentiles, ...]) | Generate descriptive statistics. |
DataFrameGroupBy.diff([periods, axis]) | First discrete difference of element. |
DataFrameGroupBy.ffill([limit]) | Forward fill the values. |
DataFrameGroupBy.fillna([value, method, ...]) | (DEPRECATED) Fill NA/NaN values using the specified method within groups. |
DataFrameGroupBy.first([numeric_only, ...]) | Compute the first entry of each column within each group. |
DataFrameGroupBy.head([n]) | Return first n rows of each group. |
DataFrameGroupBy.idxmax([axis, skipna, ...]) | Return index of first occurrence of maximum over requested axis. |
DataFrameGroupBy.idxmin([axis, skipna, ...]) | Return index of first occurrence of minimum over requested axis. |
DataFrameGroupBy.last([numeric_only, ...]) | Compute the last entry of each column within each group. |
DataFrameGroupBy.max([numeric_only, ...]) | Compute max of group values. |
DataFrameGroupBy.mean([numeric_only, ...]) | Compute mean of groups, excluding missing values. |
DataFrameGroupBy.median([numeric_only]) | Compute median of groups, excluding missing values. |
DataFrameGroupBy.min([numeric_only, ...]) | Compute min of group values. |
DataFrameGroupBy.ngroup([ascending]) | Number each group from 0 to the number of groups - 1. |
DataFrameGroupBy.nth | Take the nth row from each group if n is an int, otherwise a subset of rows. |
DataFrameGroupBy.nunique([dropna]) | Return DataFrame with counts of unique elements in each position. |
DataFrameGroupBy.ohlc() | Compute open, high, low and close values of a group, excluding missing values. |
DataFrameGroupBy.pct_change([periods, ...]) | Calculate pct_change of each value to previous entry in group. |
DataFrameGroupBy.prod([numeric_only, min_count]) | Compute prod of group values. |
DataFrameGroupBy.quantile([q, ...]) | Return group values at the given quantile, a la numpy.percentile. |
DataFrameGroupBy.rank([method, ascending, ...]) | Provide the rank of values within each group. |
DataFrameGroupBy.resample(rule, *args[, ...]) | Provide resampling when using a TimeGrouper. |
DataFrameGroupBy.rolling(*args, **kwargs) | Return a rolling grouper, providing rolling functionality per group. |
DataFrameGroupBy.sample([n, frac, replace, ...]) | Return a random sample of items from each group. |
DataFrameGroupBy.sem([ddof, numeric_only]) | Compute standard error of the mean of groups, excluding missing values. |
DataFrameGroupBy.shift([periods, freq, ...]) | Shift each group by periods observations. |
DataFrameGroupBy.size() | Compute group sizes. |
DataFrameGroupBy.skew([axis, skipna, ...]) | Return unbiased skew within groups. |
DataFrameGroupBy.std([ddof, engine, ...]) | Compute standard deviation of groups, excluding missing values. |
DataFrameGroupBy.sum([numeric_only, ...]) | Compute sum of group values. |
DataFrameGroupBy.var([ddof, engine, ...]) | Compute variance of groups, excluding missing values. |
DataFrameGroupBy.tail([n]) | Return last n rows of each group. |
DataFrameGroupBy.take(indices[, axis]) | Return the elements in the given positional indices in each group. |
DataFrameGroupBy.value_counts([subset, ...]) | Return a Series or DataFrame containing counts of unique rows. |
SeriesGroupBy
computations / descriptive stats#
SeriesGroupBy.all([skipna]) | Return True if all values in the group are truthful, else False. |
---|---|
SeriesGroupBy.any([skipna]) | Return True if any value in the group is truthful, else False. |
SeriesGroupBy.bfill([limit]) | Backward fill the values. |
SeriesGroupBy.corr(other[, method, min_periods]) | Compute correlation with other Series, excluding missing values. |
SeriesGroupBy.count() | Compute count of group, excluding missing values. |
SeriesGroupBy.cov(other[, min_periods, ddof]) | Compute covariance with Series, excluding missing values. |
SeriesGroupBy.cumcount([ascending]) | Number each item in each group from 0 to the length of that group - 1. |
SeriesGroupBy.cummax([axis, numeric_only]) | Cumulative max for each group. |
SeriesGroupBy.cummin([axis, numeric_only]) | Cumulative min for each group. |
SeriesGroupBy.cumprod([axis]) | Cumulative product for each group. |
SeriesGroupBy.cumsum([axis]) | Cumulative sum for each group. |
SeriesGroupBy.describe([percentiles, ...]) | Generate descriptive statistics. |
SeriesGroupBy.diff([periods, axis]) | First discrete difference of element. |
SeriesGroupBy.ffill([limit]) | Forward fill the values. |
SeriesGroupBy.fillna([value, method, axis, ...]) | (DEPRECATED) Fill NA/NaN values using the specified method within groups. |
SeriesGroupBy.first([numeric_only, ...]) | Compute the first entry of each column within each group. |
SeriesGroupBy.head([n]) | Return first n rows of each group. |
SeriesGroupBy.last([numeric_only, ...]) | Compute the last entry of each column within each group. |
SeriesGroupBy.idxmax([axis, skipna]) | Return the row label of the maximum value. |
SeriesGroupBy.idxmin([axis, skipna]) | Return the row label of the minimum value. |
SeriesGroupBy.is_monotonic_increasing | Return whether each group's values are monotonically increasing. |
SeriesGroupBy.is_monotonic_decreasing | Return whether each group's values are monotonically decreasing. |
SeriesGroupBy.max([numeric_only, min_count, ...]) | Compute max of group values. |
SeriesGroupBy.mean([numeric_only, engine, ...]) | Compute mean of groups, excluding missing values. |
SeriesGroupBy.median([numeric_only]) | Compute median of groups, excluding missing values. |
SeriesGroupBy.min([numeric_only, min_count, ...]) | Compute min of group values. |
SeriesGroupBy.ngroup([ascending]) | Number each group from 0 to the number of groups - 1. |
SeriesGroupBy.nlargest([n, keep]) | Return the largest n elements. |
SeriesGroupBy.nsmallest([n, keep]) | Return the smallest n elements. |
SeriesGroupBy.nth | Take the nth row from each group if n is an int, otherwise a subset of rows. |
SeriesGroupBy.nunique([dropna]) | Return number of unique elements in the group. |
SeriesGroupBy.unique() | Return unique values for each group. |
SeriesGroupBy.ohlc() | Compute open, high, low and close values of a group, excluding missing values. |
SeriesGroupBy.pct_change([periods, ...]) | Calculate pct_change of each value to previous entry in group. |
SeriesGroupBy.prod([numeric_only, min_count]) | Compute prod of group values. |
SeriesGroupBy.quantile([q, interpolation, ...]) | Return group values at the given quantile, a la numpy.percentile. |
SeriesGroupBy.rank([method, ascending, ...]) | Provide the rank of values within each group. |
SeriesGroupBy.resample(rule, *args[, ...]) | Provide resampling when using a TimeGrouper. |
SeriesGroupBy.rolling(*args, **kwargs) | Return a rolling grouper, providing rolling functionality per group. |
SeriesGroupBy.sample([n, frac, replace, ...]) | Return a random sample of items from each group. |
SeriesGroupBy.sem([ddof, numeric_only]) | Compute standard error of the mean of groups, excluding missing values. |
SeriesGroupBy.shift([periods, freq, axis, ...]) | Shift each group by periods observations. |
SeriesGroupBy.size() | Compute group sizes. |
SeriesGroupBy.skew([axis, skipna, numeric_only]) | Return unbiased skew within groups. |
SeriesGroupBy.std([ddof, engine, ...]) | Compute standard deviation of groups, excluding missing values. |
SeriesGroupBy.sum([numeric_only, min_count, ...]) | Compute sum of group values. |
SeriesGroupBy.var([ddof, engine, ...]) | Compute variance of groups, excluding missing values. |
SeriesGroupBy.tail([n]) | Return last n rows of each group. |
SeriesGroupBy.take(indices[, axis]) | Return the elements in the given positional indices in each group. |
SeriesGroupBy.value_counts([normalize, ...]) |