split-apply-combine — pandas 2.2.3 documentation (original) (raw)

Group by: split-apply-combine#

By “group by” we are referring to a process involving one or more of the following steps:

Out of these, the split step is the most straightforward. In the apply step, we might wish to do one of the following:

Many of these operations are defined on GroupBy objects. These operations are similar to those of the aggregating API,window API, and resample API.

It is possible that a given operation does not fall into one of these categories or is some combination of them. In such a case, it may be possible to compute the operation using GroupBy’s apply method. This method will examine the results of the apply step and try to sensibly combine them into a single result if it doesn’t fit into either of the above three categories.

Note

An operation that is split into multiple steps using built-in GroupBy operations will be more efficient than using the apply method with a user-defined Python function.

The name GroupBy should be quite familiar to those who have used a SQL-based tool (or itertools), in which you can write code like:

SELECT Column1, Column2, mean(Column3), sum(Column4) FROM SomeTable GROUP BY Column1, Column2

We aim to make operations like this natural and easy to express using pandas. We’ll address each area of GroupBy functionality, then provide some non-trivial examples / use cases.

See the cookbook for some advanced strategies.

Splitting an object into groups#

The abstract definition of grouping is to provide a mapping of labels to group names. To create a GroupBy object (more on what the GroupBy object is later), you may do the following:

In [1]: speeds = pd.DataFrame( ...: [ ...: ("bird", "Falconiformes", 389.0), ...: ("bird", "Psittaciformes", 24.0), ...: ("mammal", "Carnivora", 80.2), ...: ("mammal", "Primates", np.nan), ...: ("mammal", "Carnivora", 58), ...: ], ...: index=["falcon", "parrot", "lion", "monkey", "leopard"], ...: columns=("class", "order", "max_speed"), ...: ) ...:

In [2]: speeds Out[2]: class order max_speed falcon bird Falconiformes 389.0 parrot bird Psittaciformes 24.0 lion mammal Carnivora 80.2 monkey mammal Primates NaN leopard mammal Carnivora 58.0

In [3]: grouped = speeds.groupby("class")

In [4]: grouped = speeds.groupby(["class", "order"])

The mapping can be specified many different ways:

Collectively we refer to the grouping objects as the keys. For example, consider the following DataFrame:

Note

A string passed to groupby may refer to either a column or an index level. If a string matches both a column name and an index level name, aValueError will be raised.

In [5]: df = pd.DataFrame( ...: { ...: "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], ...: "B": ["one", "one", "two", "three", "two", "two", "one", "three"], ...: "C": np.random.randn(8), ...: "D": np.random.randn(8), ...: } ...: ) ...:

In [6]: df Out[6]: A B C D 0 foo one 0.469112 -0.861849 1 bar one -0.282863 -2.104569 2 foo two -1.509059 -0.494929 3 bar three -1.135632 1.071804 4 foo two 1.212112 0.721555 5 bar two -0.173215 -0.706771 6 foo one 0.119209 -1.039575 7 foo three -1.044236 0.271860

On a DataFrame, we obtain a GroupBy object by calling groupby(). This method returns a pandas.api.typing.DataFrameGroupBy instance. We could naturally group by either the A or B columns, or both:

In [7]: grouped = df.groupby("A")

In [8]: grouped = df.groupby("B")

In [9]: grouped = df.groupby(["A", "B"])

Note

df.groupby('A') is just syntactic sugar for df.groupby(df['A']).

If we also have a MultiIndex on columns A and B, we can group by all the columns except the one we specify:

In [10]: df2 = df.set_index(["A", "B"])

In [11]: grouped = df2.groupby(level=df2.index.names.difference(["B"]))

In [12]: grouped.sum() Out[12]: C D A
bar -1.591710 -1.739537 foo -0.752861 -1.402938

The above GroupBy will split the DataFrame on its index (rows). To split by columns, first do a transpose:

In [13]: def get_letter_type(letter): ....: if letter.lower() in 'aeiou': ....: return 'vowel' ....: else: ....: return 'consonant' ....:

In [14]: grouped = df.T.groupby(get_letter_type)

pandas Index objects support duplicate values. If a non-unique index is used as the group key in a groupby operation, all values for the same index value will be considered to be in one group and thus the output of aggregation functions will only contain unique index values:

In [15]: index = [1, 2, 3, 1, 2, 3]

In [16]: s = pd.Series([1, 2, 3, 10, 20, 30], index=index)

In [17]: s Out[17]: 1 1 2 2 3 3 1 10 2 20 3 30 dtype: int64

In [18]: grouped = s.groupby(level=0)

In [19]: grouped.first() Out[19]: 1 1 2 2 3 3 dtype: int64

In [20]: grouped.last() Out[20]: 1 10 2 20 3 30 dtype: int64

In [21]: grouped.sum() Out[21]: 1 11 2 22 3 33 dtype: int64

Note that no splitting occurs until it’s needed. Creating the GroupBy object only verifies that you’ve passed a valid mapping.

Note

Many kinds of complicated data manipulations can be expressed in terms of GroupBy operations (though it can’t be guaranteed to be the most efficient implementation). You can get quite creative with the label mapping functions.

GroupBy sorting#

By default the group keys are sorted during the groupby operation. You may however pass sort=False for potential speedups. With sort=False the order among group-keys follows the order of appearance of the keys in the original dataframe:

In [22]: df2 = pd.DataFrame({"X": ["B", "B", "A", "A"], "Y": [1, 2, 3, 4]})

In [23]: df2.groupby(["X"]).sum() Out[23]: Y X
A 7 B 3

In [24]: df2.groupby(["X"], sort=False).sum() Out[24]: Y X
B 3 A 7

Note that groupby will preserve the order in which observations are sorted within each group. For example, the groups created by groupby() below are in the order they appeared in the original DataFrame:

In [25]: df3 = pd.DataFrame({"X": ["A", "B", "A", "B"], "Y": [1, 4, 3, 2]})

In [26]: df3.groupby("X").get_group("A") Out[26]: X Y 0 A 1 2 A 3

In [27]: df3.groupby(["X"]).get_group(("B",)) Out[27]: X Y 1 B 4 3 B 2

GroupBy dropna#

By default NA values are excluded from group keys during the groupby operation. However, in case you want to include NA values in group keys, you could pass dropna=False to achieve it.

In [28]: df_list = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]]

In [29]: df_dropna = pd.DataFrame(df_list, columns=["a", "b", "c"])

In [30]: df_dropna Out[30]: a b c 0 1 2.0 3 1 1 NaN 4 2 2 1.0 3 3 1 2.0 2

Default dropna is set to True, which will exclude NaNs in keys

In [31]: df_dropna.groupby(by=["b"], dropna=True).sum() Out[31]: a c b
1.0 2 3 2.0 2 5

In order to allow NaN in keys, set dropna to False

In [32]: df_dropna.groupby(by=["b"], dropna=False).sum() Out[32]: a c b
1.0 2 3 2.0 2 5 NaN 1 4

The default setting of dropna argument is True which means NA are not included in group keys.

GroupBy object attributes#

The groups attribute is a dictionary whose keys are the computed unique groups and corresponding values are the axis labels belonging to each group. In the above example we have:

In [33]: df.groupby("A").groups Out[33]: {'bar': [1, 3, 5], 'foo': [0, 2, 4, 6, 7]}

In [34]: df.T.groupby(get_letter_type).groups Out[34]: {'consonant': ['B', 'C', 'D'], 'vowel': ['A']}

Calling the standard Python len function on the GroupBy object returns the number of groups, which is the same as the length of the groups dictionary:

In [35]: grouped = df.groupby(["A", "B"])

In [36]: grouped.groups Out[36]: {('bar', 'one'): [1], ('bar', 'three'): [3], ('bar', 'two'): [5], ('foo', 'one'): [0, 6], ('foo', 'three'): [7], ('foo', 'two'): [2, 4]}

In [37]: len(grouped) Out[37]: 6

GroupBy will tab complete column names, GroupBy operations, and other attributes:

In [38]: n = 10

In [39]: weight = np.random.normal(166, 20, size=n)

In [40]: height = np.random.normal(60, 10, size=n)

In [41]: time = pd.date_range("1/1/2000", periods=n)

In [42]: gender = np.random.choice(["male", "female"], size=n)

In [43]: df = pd.DataFrame( ....: {"height": height, "weight": weight, "gender": gender}, index=time ....: ) ....:

In [44]: df Out[44]: height weight gender 2000-01-01 42.849980 157.500553 male 2000-01-02 49.607315 177.340407 male 2000-01-03 56.293531 171.524640 male 2000-01-04 48.421077 144.251986 female 2000-01-05 46.556882 152.526206 male 2000-01-06 68.448851 168.272968 female 2000-01-07 70.757698 136.431469 male 2000-01-08 58.909500 176.499753 female 2000-01-09 76.435631 174.094104 female 2000-01-10 45.306120 177.540920 male

In [45]: gb = df.groupby("gender")

In [46]: gb. # noqa: E225, E999 gb.agg gb.boxplot gb.cummin gb.describe gb.filter gb.get_group gb.height gb.last gb.median gb.ngroups gb.plot gb.rank gb.std gb.transform gb.aggregate gb.count gb.cumprod gb.dtype gb.first gb.groups gb.hist gb.max gb.min gb.nth gb.prod gb.resample gb.sum gb.var gb.apply gb.cummax gb.cumsum gb.fillna gb.gender gb.head gb.indices gb.mean gb.name gb.ohlc gb.quantile gb.size gb.tail gb.weight

GroupBy with MultiIndex#

With hierarchically-indexed data, it’s quite natural to group by one of the levels of the hierarchy.

Let’s create a Series with a two-level MultiIndex.

In [47]: arrays = [ ....: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ....: ["one", "two", "one", "two", "one", "two", "one", "two"], ....: ] ....:

In [48]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"])

In [49]: s = pd.Series(np.random.randn(8), index=index)

In [50]: s Out[50]: first second bar one -0.919854 two -0.042379 baz one 1.247642 two -0.009920 foo one 0.290213 two 0.495767 qux one 0.362949 two 1.548106 dtype: float64

We can then group by one of the levels in s.

In [51]: grouped = s.groupby(level=0)

In [52]: grouped.sum() Out[52]: first bar -0.962232 baz 1.237723 foo 0.785980 qux 1.911055 dtype: float64

If the MultiIndex has names specified, these can be passed instead of the level number:

In [53]: s.groupby(level="second").sum() Out[53]: second one 0.980950 two 1.991575 dtype: float64

Grouping with multiple levels is supported.

In [54]: arrays = [ ....: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ....: ["doo", "doo", "bee", "bee", "bop", "bop", "bop", "bop"], ....: ["one", "two", "one", "two", "one", "two", "one", "two"], ....: ] ....:

In [55]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second", "third"])

In [56]: s = pd.Series(np.random.randn(8), index=index)

In [57]: s Out[57]: first second third bar doo one -1.131345 two -0.089329 baz bee one 0.337863 two -0.945867 foo bop one -0.932132 two 1.956030 qux bop one 0.017587 two -0.016692 dtype: float64

In [58]: s.groupby(level=["first", "second"]).sum() Out[58]: first second bar doo -1.220674 baz bee -0.608004 foo bop 1.023898 qux bop 0.000895 dtype: float64

Index level names may be supplied as keys.

In [59]: s.groupby(["first", "second"]).sum() Out[59]: first second bar doo -1.220674 baz bee -0.608004 foo bop 1.023898 qux bop 0.000895 dtype: float64

More on the sum function and aggregation later.

Grouping DataFrame with Index levels and columns#

A DataFrame may be grouped by a combination of columns and index levels. You can specify both column and index names, or use a Grouper.

Let’s first create a DataFrame with a MultiIndex:

In [60]: arrays = [ ....: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ....: ["one", "two", "one", "two", "one", "two", "one", "two"], ....: ] ....:

In [61]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"])

In [62]: df = pd.DataFrame({"A": [1, 1, 1, 1, 2, 2, 3, 3], "B": np.arange(8)}, index=index)

In [63]: df Out[63]: A B first second
bar one 1 0 two 1 1 baz one 1 2 two 1 3 foo one 2 4 two 2 5 qux one 3 6 two 3 7

Then we group df by the second index level and the A column.

In [64]: df.groupby([pd.Grouper(level=1), "A"]).sum() Out[64]: B second A
one 1 2 2 4 3 6 two 1 4 2 5 3 7

Index levels may also be specified by name.

In [65]: df.groupby([pd.Grouper(level="second"), "A"]).sum() Out[65]: B second A
one 1 2 2 4 3 6 two 1 4 2 5 3 7

Index level names may be specified as keys directly to groupby.

In [66]: df.groupby(["second", "A"]).sum() Out[66]: B second A
one 1 2 2 4 3 6 two 1 4 2 5 3 7

DataFrame column selection in GroupBy#

Once you have created the GroupBy object from a DataFrame, you might want to do something different for each of the columns. Thus, by using [] on the GroupBy object in a similar way as the one used to get a column from a DataFrame, you can do:

In [67]: df = pd.DataFrame( ....: { ....: "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], ....: "B": ["one", "one", "two", "three", "two", "two", "one", "three"], ....: "C": np.random.randn(8), ....: "D": np.random.randn(8), ....: } ....: ) ....:

In [68]: df Out[68]: A B C D 0 foo one -0.575247 1.346061 1 bar one 0.254161 1.511763 2 foo two -1.143704 1.627081 3 bar three 0.215897 -0.990582 4 foo two 1.193555 -0.441652 5 bar two -0.077118 1.211526 6 foo one -0.408530 0.268520 7 foo three -0.862495 0.024580

In [69]: grouped = df.groupby(["A"])

In [70]: grouped_C = grouped["C"]

In [71]: grouped_D = grouped["D"]

This is mainly syntactic sugar for the alternative, which is much more verbose:

In [72]: df["C"].groupby(df["A"]) Out[72]: <pandas.core.groupby.generic.SeriesGroupBy object at 0x7fe8c93fd090>

Additionally, this method avoids recomputing the internal grouping information derived from the passed key.

You can also include the grouping columns if you want to operate on them.

In [73]: grouped[["A", "B"]].sum() Out[73]: A B A
bar barbarbar onethreetwo foo foofoofoofoofoo onetwotwoonethree

Iterating through groups#

With the GroupBy object in hand, iterating through the grouped data is very natural and functions similarly to itertools.groupby():

In [74]: grouped = df.groupby('A')

In [75]: for name, group in grouped: ....: print(name) ....: print(group) ....: bar A B C D 1 bar one 0.254161 1.511763 3 bar three 0.215897 -0.990582 5 bar two -0.077118 1.211526 foo A B C D 0 foo one -0.575247 1.346061 2 foo two -1.143704 1.627081 4 foo two 1.193555 -0.441652 6 foo one -0.408530 0.268520 7 foo three -0.862495 0.024580

In the case of grouping by multiple keys, the group name will be a tuple:

In [76]: for name, group in df.groupby(['A', 'B']): ....: print(name) ....: print(group) ....: ('bar', 'one') A B C D 1 bar one 0.254161 1.511763 ('bar', 'three') A B C D 3 bar three 0.215897 -0.990582 ('bar', 'two') A B C D 5 bar two -0.077118 1.211526 ('foo', 'one') A B C D 0 foo one -0.575247 1.346061 6 foo one -0.408530 0.268520 ('foo', 'three') A B C D 7 foo three -0.862495 0.02458 ('foo', 'two') A B C D 2 foo two -1.143704 1.627081 4 foo two 1.193555 -0.441652

See Iterating through groups.

Selecting a group#

A single group can be selected usingDataFrameGroupBy.get_group():

In [77]: grouped.get_group("bar") Out[77]: A B C D 1 bar one 0.254161 1.511763 3 bar three 0.215897 -0.990582 5 bar two -0.077118 1.211526

Or for an object grouped on multiple columns:

In [78]: df.groupby(["A", "B"]).get_group(("bar", "one")) Out[78]: A B C D 1 bar one 0.254161 1.511763

Aggregation#

An aggregation is a GroupBy operation that reduces the dimension of the grouping object. The result of an aggregation is, or at least is treated as, a scalar value for each column in a group. For example, producing the sum of each column in a group of values.

In [79]: animals = pd.DataFrame( ....: { ....: "kind": ["cat", "dog", "cat", "dog"], ....: "height": [9.1, 6.0, 9.5, 34.0], ....: "weight": [7.9, 7.5, 9.9, 198.0], ....: } ....: ) ....:

In [80]: animals Out[80]: kind height weight 0 cat 9.1 7.9 1 dog 6.0 7.5 2 cat 9.5 9.9 3 dog 34.0 198.0

In [81]: animals.groupby("kind").sum() Out[81]: height weight kind
cat 18.6 17.8 dog 40.0 205.5

In the result, the keys of the groups appear in the index by default. They can be instead included in the columns by passing as_index=False.

In [82]: animals.groupby("kind", as_index=False).sum() Out[82]: kind height weight 0 cat 18.6 17.8 1 dog 40.0 205.5

Built-in aggregation methods#

Many common aggregations are built-in to GroupBy objects as methods. Of the methods listed below, those with a * do not have an efficient, GroupBy-specific, implementation.

Method Description
any() Compute whether any of the values in the groups are truthy
all() Compute whether all of the values in the groups are truthy
count() Compute the number of non-NA values in the groups
cov() * Compute the covariance of the groups
first() Compute the first occurring value in each group
idxmax() Compute the index of the maximum value in each group
idxmin() Compute the index of the minimum value in each group
last() Compute the last occurring value in each group
max() Compute the maximum value in each group
mean() Compute the mean of each group
median() Compute the median of each group
min() Compute the minimum value in each group
nunique() Compute the number of unique values in each group
prod() Compute the product of the values in each group
quantile() Compute a given quantile of the values in each group
sem() Compute the standard error of the mean of the values in each group
size() Compute the number of values in each group
skew() * Compute the skew of the values in each group
std() Compute the standard deviation of the values in each group
sum() Compute the sum of the values in each group
var() Compute the variance of the values in each group

Some examples:

In [83]: df.groupby("A")[["C", "D"]].max() Out[83]: C D A
bar 0.254161 1.511763 foo 1.193555 1.627081

In [84]: df.groupby(["A", "B"]).mean() Out[84]: C D A B
bar one 0.254161 1.511763 three 0.215897 -0.990582 two -0.077118 1.211526 foo one -0.491888 0.807291 three -0.862495 0.024580 two 0.024925 0.592714

Another aggregation example is to compute the size of each group. This is included in GroupBy as the size method. It returns a Series whose index consists of the group names and the values are the sizes of each group.

In [85]: grouped = df.groupby(["A", "B"])

In [86]: grouped.size() Out[86]: A B
bar one 1 three 1 two 1 foo one 2 three 1 two 2 dtype: int64

While the DataFrameGroupBy.describe() method is not itself a reducer, it can be used to conveniently produce a collection of summary statistics about each of the groups.

In [87]: grouped.describe() Out[87]: C ... D
count mean std ... 50% 75% max A B ...
bar one 1.0 0.254161 NaN ... 1.511763 1.511763 1.511763 three 1.0 0.215897 NaN ... -0.990582 -0.990582 -0.990582 two 1.0 -0.077118 NaN ... 1.211526 1.211526 1.211526 foo one 2.0 -0.491888 0.117887 ... 0.807291 1.076676 1.346061 three 1.0 -0.862495 NaN ... 0.024580 0.024580 0.024580 two 2.0 0.024925 1.652692 ... 0.592714 1.109898 1.627081

[6 rows x 16 columns]

Another aggregation example is to compute the number of unique values of each group. This is similar to the DataFrameGroupBy.value_counts() function, except that it only counts the number of unique values.

In [88]: ll = [['foo', 1], ['foo', 2], ['foo', 2], ['bar', 1], ['bar', 1]]

In [89]: df4 = pd.DataFrame(ll, columns=["A", "B"])

In [90]: df4 Out[90]: A B 0 foo 1 1 foo 2 2 foo 2 3 bar 1 4 bar 1

In [91]: df4.groupby("A")["B"].nunique() Out[91]: A bar 1 foo 2 Name: B, dtype: int64

Note

Aggregation functions will not return the groups that you are aggregating over as named columns when as_index=True, the default. The grouped columns will be the indices of the returned object.

Passing as_index=False will return the groups that you are aggregating over as named columns, regardless if they are named indices or columns in the inputs.

The aggregate() method#

Note

The aggregate() method can accept many different types of inputs. This section details using string aliases for various GroupBy methods; other inputs are detailed in the sections below.

Any reduction method that pandas implements can be passed as a string toaggregate(). Users are encouraged to use the shorthand,agg. It will operate as if the corresponding method was called.

In [92]: grouped = df.groupby("A")

In [93]: grouped[["C", "D"]].aggregate("sum") Out[93]: C D A
bar 0.392940 1.732707 foo -1.796421 2.824590

In [94]: grouped = df.groupby(["A", "B"])

In [95]: grouped.agg("sum") Out[95]: C D A B
bar one 0.254161 1.511763 three 0.215897 -0.990582 two -0.077118 1.211526 foo one -0.983776 1.614581 three -0.862495 0.024580 two 0.049851 1.185429

The result of the aggregation will have the group names as the new index. In the case of multiple keys, the result is aMultiIndex by default. As mentioned above, this can be changed by using the as_index option:

In [96]: grouped = df.groupby(["A", "B"], as_index=False)

In [97]: grouped.agg("sum") Out[97]: A B C D 0 bar one 0.254161 1.511763 1 bar three 0.215897 -0.990582 2 bar two -0.077118 1.211526 3 foo one -0.983776 1.614581 4 foo three -0.862495 0.024580 5 foo two 0.049851 1.185429

In [98]: df.groupby("A", as_index=False)[["C", "D"]].agg("sum") Out[98]: A C D 0 bar 0.392940 1.732707 1 foo -1.796421 2.824590

Note that you could use the DataFrame.reset_index() DataFrame function to achieve the same result as the column names are stored in the resulting MultiIndex, although this will make an extra copy.

In [99]: df.groupby(["A", "B"]).agg("sum").reset_index() Out[99]: A B C D 0 bar one 0.254161 1.511763 1 bar three 0.215897 -0.990582 2 bar two -0.077118 1.211526 3 foo one -0.983776 1.614581 4 foo three -0.862495 0.024580 5 foo two 0.049851 1.185429

Aggregation with User-Defined Functions#

Users can also provide their own User-Defined Functions (UDFs) for custom aggregations.

Note

Aggregating with a UDF is often less performant than using the pandas built-in methods on GroupBy. Consider breaking up a complex operation into a chain of operations that utilize the built-in methods.

In [100]: animals Out[100]: kind height weight 0 cat 9.1 7.9 1 dog 6.0 7.5 2 cat 9.5 9.9 3 dog 34.0 198.0

In [101]: animals.groupby("kind")[["height"]].agg(lambda x: set(x)) Out[101]: height kind
cat {9.1, 9.5} dog {34.0, 6.0}

The resulting dtype will reflect that of the aggregating function. If the results from different groups have different dtypes, then a common dtype will be determined in the same way as DataFrame construction.

In [102]: animals.groupby("kind")[["height"]].agg(lambda x: x.astype(int).sum()) Out[102]: height kind
cat 18 dog 40

Applying multiple functions at once#

On a grouped Series, you can pass a list or dict of functions toSeriesGroupBy.agg(), outputting a DataFrame:

In [103]: grouped = df.groupby("A")

In [104]: grouped["C"].agg(["sum", "mean", "std"]) Out[104]: sum mean std A
bar 0.392940 0.130980 0.181231 foo -1.796421 -0.359284 0.912265

On a grouped DataFrame, you can pass a list of functions toDataFrameGroupBy.agg() to aggregate each column, which produces an aggregated result with a hierarchical column index:

In [105]: grouped[["C", "D"]].agg(["sum", "mean", "std"]) Out[105]: C D
sum mean std sum mean std A
bar 0.392940 0.130980 0.181231 1.732707 0.577569 1.366330 foo -1.796421 -0.359284 0.912265 2.824590 0.564918 0.884785

The resulting aggregations are named after the functions themselves. If you need to rename, then you can add in a chained operation for a Series like this:

In [106]: ( .....: grouped["C"] .....: .agg(["sum", "mean", "std"]) .....: .rename(columns={"sum": "foo", "mean": "bar", "std": "baz"}) .....: ) .....: Out[106]: foo bar baz A
bar 0.392940 0.130980 0.181231 foo -1.796421 -0.359284 0.912265

For a grouped DataFrame, you can rename in a similar manner:

In [107]: ( .....: grouped[["C", "D"]].agg(["sum", "mean", "std"]).rename( .....: columns={"sum": "foo", "mean": "bar", "std": "baz"} .....: ) .....: ) .....: Out[107]: C D
foo bar baz foo bar baz A
bar 0.392940 0.130980 0.181231 1.732707 0.577569 1.366330 foo -1.796421 -0.359284 0.912265 2.824590 0.564918 0.884785

Note

In general, the output column names should be unique, but pandas will allow you apply to the same function (or two functions with the same name) to the same column.

In [108]: grouped["C"].agg(["sum", "sum"]) Out[108]: sum sum A
bar 0.392940 0.392940 foo -1.796421 -1.796421

pandas also allows you to provide multiple lambdas. In this case, pandas will mangle the name of the (nameless) lambda functions, appending _<i>to each subsequent lambda.

In [109]: grouped["C"].agg([lambda x: x.max() - x.min(), lambda x: x.median() - x.mean()]) Out[109]: A
bar 0.331279 0.084917 foo 2.337259 -0.215962

Named aggregation#

To support column-specific aggregation with control over the output column names, pandas accepts the special syntax in DataFrameGroupBy.agg() and SeriesGroupBy.agg(), known as “named aggregation”, where

In [110]: animals Out[110]: kind height weight 0 cat 9.1 7.9 1 dog 6.0 7.5 2 cat 9.5 9.9 3 dog 34.0 198.0

In [111]: animals.groupby("kind").agg( .....: min_height=pd.NamedAgg(column="height", aggfunc="min"), .....: max_height=pd.NamedAgg(column="height", aggfunc="max"), .....: average_weight=pd.NamedAgg(column="weight", aggfunc="mean"), .....: ) .....: Out[111]: min_height max_height average_weight kind
cat 9.1 9.5 8.90 dog 6.0 34.0 102.75

NamedAgg is just a namedtuple. Plain tuples are allowed as well.

In [112]: animals.groupby("kind").agg( .....: min_height=("height", "min"), .....: max_height=("height", "max"), .....: average_weight=("weight", "mean"), .....: ) .....: Out[112]: min_height max_height average_weight kind
cat 9.1 9.5 8.90 dog 6.0 34.0 102.75

If the column names you want are not valid Python keywords, construct a dictionary and unpack the keyword arguments

In [113]: animals.groupby("kind").agg( .....: **{ .....: "total weight": pd.NamedAgg(column="weight", aggfunc="sum") .....: } .....: ) .....: Out[113]: total weight kind
cat 17.8 dog 205.5

When using named aggregation, additional keyword arguments are not passed through to the aggregation functions; only pairs of (column, aggfunc) should be passed as **kwargs. If your aggregation functions require additional arguments, apply them partially with functools.partial().

Named aggregation is also valid for Series groupby aggregations. In this case there’s no column selection, so the values are just the functions.

In [114]: animals.groupby("kind").height.agg( .....: min_height="min", .....: max_height="max", .....: ) .....: Out[114]: min_height max_height kind
cat 9.1 9.5 dog 6.0 34.0

Applying different functions to DataFrame columns#

By passing a dict to aggregate you can apply a different aggregation to the columns of a DataFrame:

In [115]: grouped.agg({"C": "sum", "D": lambda x: np.std(x, ddof=1)}) Out[115]: C D A
bar 0.392940 1.366330 foo -1.796421 0.884785

The function names can also be strings. In order for a string to be valid it must be implemented on GroupBy:

In [116]: grouped.agg({"C": "sum", "D": "std"}) Out[116]: C D A
bar 0.392940 1.366330 foo -1.796421 0.884785

Transformation#

A transformation is a GroupBy operation whose result is indexed the same as the one being grouped. Common examples include cumsum() anddiff().

In [117]: speeds Out[117]: class order max_speed falcon bird Falconiformes 389.0 parrot bird Psittaciformes 24.0 lion mammal Carnivora 80.2 monkey mammal Primates NaN leopard mammal Carnivora 58.0

In [118]: grouped = speeds.groupby("class")["max_speed"]

In [119]: grouped.cumsum() Out[119]: falcon 389.0 parrot 413.0 lion 80.2 monkey NaN leopard 138.2 Name: max_speed, dtype: float64

In [120]: grouped.diff() Out[120]: falcon NaN parrot -365.0 lion NaN monkey NaN leopard NaN Name: max_speed, dtype: float64

Unlike aggregations, the groupings that are used to split the original object are not included in the result.

Note

Since transformations do not include the groupings that are used to split the result, the arguments as_index and sort in DataFrame.groupby() andSeries.groupby() have no effect.

A common use of a transformation is to add the result back into the original DataFrame.

In [121]: result = speeds.copy()

In [122]: result["cumsum"] = grouped.cumsum()

In [123]: result["diff"] = grouped.diff()

In [124]: result Out[124]: class order max_speed cumsum diff falcon bird Falconiformes 389.0 389.0 NaN parrot bird Psittaciformes 24.0 413.0 -365.0 lion mammal Carnivora 80.2 80.2 NaN monkey mammal Primates NaN NaN NaN leopard mammal Carnivora 58.0 138.2 NaN

Built-in transformation methods#

The following methods on GroupBy act as transformations.

Method Description
bfill() Back fill NA values within each group
cumcount() Compute the cumulative count within each group
cummax() Compute the cumulative max within each group
cummin() Compute the cumulative min within each group
cumprod() Compute the cumulative product within each group
cumsum() Compute the cumulative sum within each group
diff() Compute the difference between adjacent values within each group
ffill() Forward fill NA values within each group
pct_change() Compute the percent change between adjacent values within each group
rank() Compute the rank of each value within each group
shift() Shift values up or down within each group

In addition, passing any built-in aggregation method as a string totransform() (see the next section) will broadcast the result across the group, producing a transformed result. If the aggregation method has an efficient implementation, this will be performant as well.

The transform() method#

Similar to the aggregation method, thetransform() method can accept string aliases to the built-in transformation methods in the previous section. It can also accept string aliases to the built-in aggregation methods. When an aggregation method is provided, the result will be broadcast across the group.

In [125]: speeds Out[125]: class order max_speed falcon bird Falconiformes 389.0 parrot bird Psittaciformes 24.0 lion mammal Carnivora 80.2 monkey mammal Primates NaN leopard mammal Carnivora 58.0

In [126]: grouped = speeds.groupby("class")[["max_speed"]]

In [127]: grouped.transform("cumsum") Out[127]: max_speed falcon 389.0 parrot 413.0 lion 80.2 monkey NaN leopard 138.2

In [128]: grouped.transform("sum") Out[128]: max_speed falcon 413.0 parrot 413.0 lion 138.2 monkey 138.2 leopard 138.2

In addition to string aliases, the transform() method can also accept User-Defined Functions (UDFs). The UDF must:

Note

Transforming by supplying transform with a UDF is often less performant than using the built-in methods on GroupBy. Consider breaking up a complex operation into a chain of operations that utilize the built-in methods.

All of the examples in this section can be made more performant by calling built-in methods instead of using UDFs. See below for examples.

Changed in version 2.0.0: When using .transform on a grouped DataFrame and the transformation function returns a DataFrame, pandas now aligns the result’s index with the input’s index. You can call .to_numpy() within the transformation function to avoid alignment.

Similar to The aggregate() method, the resulting dtype will reflect that of the transformation function. If the results from different groups have different dtypes, then a common dtype will be determined in the same way as DataFrame construction.

Suppose we wish to standardize the data within each group:

In [129]: index = pd.date_range("10/1/1999", periods=1100)

In [130]: ts = pd.Series(np.random.normal(0.5, 2, 1100), index)

In [131]: ts = ts.rolling(window=100, min_periods=100).mean().dropna()

In [132]: ts.head() Out[132]: 2000-01-08 0.779333 2000-01-09 0.778852 2000-01-10 0.786476 2000-01-11 0.782797 2000-01-12 0.798110 Freq: D, dtype: float64

In [133]: ts.tail() Out[133]: 2002-09-30 0.660294 2002-10-01 0.631095 2002-10-02 0.673601 2002-10-03 0.709213 2002-10-04 0.719369 Freq: D, dtype: float64

In [134]: transformed = ts.groupby(lambda x: x.year).transform( .....: lambda x: (x - x.mean()) / x.std() .....: ) .....:

We would expect the result to now have mean 0 and standard deviation 1 within each group (up to floating-point error), which we can easily check:

Original Data

In [135]: grouped = ts.groupby(lambda x: x.year)

In [136]: grouped.mean() Out[136]: 2000 0.442441 2001 0.526246 2002 0.459365 dtype: float64

In [137]: grouped.std() Out[137]: 2000 0.131752 2001 0.210945 2002 0.128753 dtype: float64

Transformed Data

In [138]: grouped_trans = transformed.groupby(lambda x: x.year)

In [139]: grouped_trans.mean() Out[139]: 2000 -4.870756e-16 2001 -1.545187e-16 2002 4.136282e-16 dtype: float64

In [140]: grouped_trans.std() Out[140]: 2000 1.0 2001 1.0 2002 1.0 dtype: float64

We can also visually compare the original and transformed data sets.

In [141]: compare = pd.DataFrame({"Original": ts, "Transformed": transformed})

In [142]: compare.plot() Out[142]: <Axes: >

../_images/groupby_transform_plot.png

Transformation functions that have lower dimension outputs are broadcast to match the shape of the input array.

In [143]: ts.groupby(lambda x: x.year).transform(lambda x: x.max() - x.min()) Out[143]: 2000-01-08 0.623893 2000-01-09 0.623893 2000-01-10 0.623893 2000-01-11 0.623893 2000-01-12 0.623893 ...
2002-09-30 0.558275 2002-10-01 0.558275 2002-10-02 0.558275 2002-10-03 0.558275 2002-10-04 0.558275 Freq: D, Length: 1001, dtype: float64

Another common data transform is to replace missing data with the group mean.

In [144]: cols = ["A", "B", "C"]

In [145]: values = np.random.randn(1000, 3)

In [146]: values[np.random.randint(0, 1000, 100), 0] = np.nan

In [147]: values[np.random.randint(0, 1000, 50), 1] = np.nan

In [148]: values[np.random.randint(0, 1000, 200), 2] = np.nan

In [149]: data_df = pd.DataFrame(values, columns=cols)

In [150]: data_df Out[150]: A B C 0 1.539708 -1.166480 0.533026 1 1.302092 -0.505754 NaN 2 -0.371983 1.104803 -0.651520 3 -1.309622 1.118697 -1.161657 4 -1.924296 0.396437 0.812436 .. ... ... ... 995 -0.093110 0.683847 -0.774753 996 -0.185043 1.438572 NaN 997 -0.394469 -0.642343 0.011374 998 -1.174126 1.857148 NaN 999 0.234564 0.517098 0.393534

[1000 rows x 3 columns]

In [151]: countries = np.array(["US", "UK", "GR", "JP"])

In [152]: key = countries[np.random.randint(0, 4, 1000)]

In [153]: grouped = data_df.groupby(key)

Non-NA count in each group

In [154]: grouped.count() Out[154]: A B C GR 209 217 189 JP 240 255 217 UK 216 231 193 US 239 250 217

In [155]: transformed = grouped.transform(lambda x: x.fillna(x.mean()))

We can verify that the group means have not changed in the transformed data, and that the transformed data contains no NAs.

In [156]: grouped_trans = transformed.groupby(key)

In [157]: grouped.mean() # original group means Out[157]: A B C GR -0.098371 -0.015420 0.068053 JP 0.069025 0.023100 -0.077324 UK 0.034069 -0.052580 -0.116525 US 0.058664 -0.020399 0.028603

In [158]: grouped_trans.mean() # transformation did not change group means Out[158]: A B C GR -0.098371 -0.015420 0.068053 JP 0.069025 0.023100 -0.077324 UK 0.034069 -0.052580 -0.116525 US 0.058664 -0.020399 0.028603

In [159]: grouped.count() # original has some missing data points Out[159]: A B C GR 209 217 189 JP 240 255 217 UK 216 231 193 US 239 250 217

In [160]: grouped_trans.count() # counts after transformation Out[160]: A B C GR 228 228 228 JP 267 267 267 UK 247 247 247 US 258 258 258

In [161]: grouped_trans.size() # Verify non-NA count equals group size Out[161]: GR 228 JP 267 UK 247 US 258 dtype: int64

As mentioned in the note above, each of the examples in this section can be computed more efficiently using built-in methods. In the code below, the inefficient way using a UDF is commented out and the faster alternative appears below.

result = ts.groupby(lambda x: x.year).transform(

lambda x: (x - x.mean()) / x.std()

)

In [162]: grouped = ts.groupby(lambda x: x.year)

In [163]: result = (ts - grouped.transform("mean")) / grouped.transform("std")

result = ts.groupby(lambda x: x.year).transform(lambda x: x.max() - x.min())

In [164]: grouped = ts.groupby(lambda x: x.year)

In [165]: result = grouped.transform("max") - grouped.transform("min")

grouped = data_df.groupby(key)

result = grouped.transform(lambda x: x.fillna(x.mean()))

In [166]: grouped = data_df.groupby(key)

In [167]: result = data_df.fillna(grouped.transform("mean"))

Window and resample operations#

It is possible to use resample(), expanding() androlling() as methods on groupbys.

The example below will apply the rolling() method on the samples of the column B, based on the groups of column A.

In [168]: df_re = pd.DataFrame({"A": [1] * 10 + [5] * 10, "B": np.arange(20)})

In [169]: df_re Out[169]: A B 0 1 0 1 1 1 2 1 2 3 1 3 4 1 4 .. .. .. 15 5 15 16 5 16 17 5 17 18 5 18 19 5 19

[20 rows x 2 columns]

In [170]: df_re.groupby("A").rolling(4).B.mean() Out[170]: A
1 0 NaN 1 NaN 2 NaN 3 1.5 4 2.5 ... 5 15 13.5 16 14.5 17 15.5 18 16.5 19 17.5 Name: B, Length: 20, dtype: float64

The expanding() method will accumulate a given operation (sum() in the example) for all the members of each particular group.

In [171]: df_re.groupby("A").expanding().sum() Out[171]: B A
1 0 0.0 1 1.0 2 3.0 3 6.0 4 10.0 ... ... 5 15 75.0 16 91.0 17 108.0 18 126.0 19 145.0

[20 rows x 1 columns]

Suppose you want to use the resample() method to get a daily frequency in each group of your dataframe, and wish to complete the missing values with the ffill() method.

In [172]: df_re = pd.DataFrame( .....: { .....: "date": pd.date_range(start="2016-01-01", periods=4, freq="W"), .....: "group": [1, 1, 2, 2], .....: "val": [5, 6, 7, 8], .....: } .....: ).set_index("date") .....:

In [173]: df_re Out[173]: group val date
2016-01-03 1 5 2016-01-10 1 6 2016-01-17 2 7 2016-01-24 2 8

In [174]: df_re.groupby("group").resample("1D", include_groups=False).ffill() Out[174]: val group date
1 2016-01-03 5 2016-01-04 5 2016-01-05 5 2016-01-06 5 2016-01-07 5 ... ... 2 2016-01-20 7 2016-01-21 7 2016-01-22 7 2016-01-23 7 2016-01-24 8

[16 rows x 1 columns]

Filtration#

A filtration is a GroupBy operation that subsets the original grouping object. It may either filter out entire groups, part of groups, or both. Filtrations return a filtered version of the calling object, including the grouping columns when provided. In the following example, class is included in the result.

In [175]: speeds Out[175]: class order max_speed falcon bird Falconiformes 389.0 parrot bird Psittaciformes 24.0 lion mammal Carnivora 80.2 monkey mammal Primates NaN leopard mammal Carnivora 58.0

In [176]: speeds.groupby("class").nth(1) Out[176]: class order max_speed parrot bird Psittaciformes 24.0 monkey mammal Primates NaN

Note

Unlike aggregations, filtrations do not add the group keys to the index of the result. Because of this, passing as_index=False or sort=True will not affect these methods.

Filtrations will respect subsetting the columns of the GroupBy object.

In [177]: speeds.groupby("class")[["order", "max_speed"]].nth(1) Out[177]: order max_speed parrot Psittaciformes 24.0 monkey Primates NaN

Built-in filtrations#

The following methods on GroupBy act as filtrations. All these methods have an efficient, GroupBy-specific, implementation.

Method Description
head() Select the top row(s) of each group
nth() Select the nth row(s) of each group
tail() Select the bottom row(s) of each group

Users can also use transformations along with Boolean indexing to construct complex filtrations within groups. For example, suppose we are given groups of products and their volumes, and we wish to subset the data to only the largest products capturing no more than 90% of the total volume within each group.

In [178]: product_volumes = pd.DataFrame( .....: { .....: "group": list("xxxxyyy"), .....: "product": list("abcdefg"), .....: "volume": [10, 30, 20, 15, 40, 10, 20], .....: } .....: ) .....:

In [179]: product_volumes Out[179]: group product volume 0 x a 10 1 x b 30 2 x c 20 3 x d 15 4 y e 40 5 y f 10 6 y g 20

Sort by volume to select the largest products first

In [180]: product_volumes = product_volumes.sort_values("volume", ascending=False)

In [181]: grouped = product_volumes.groupby("group")["volume"]

In [182]: cumpct = grouped.cumsum() / grouped.transform("sum")

In [183]: cumpct Out[183]: 4 0.571429 1 0.400000 2 0.666667 6 0.857143 3 0.866667 0 1.000000 5 1.000000 Name: volume, dtype: float64

In [184]: significant_products = product_volumes[cumpct <= 0.9]

In [185]: significant_products.sort_values(["group", "product"]) Out[185]: group product volume 1 x b 30 2 x c 20 3 x d 15 4 y e 40 6 y g 20

The filter method#

Note

Filtering by supplying filter with a User-Defined Function (UDF) is often less performant than using the built-in methods on GroupBy. Consider breaking up a complex operation into a chain of operations that utilize the built-in methods.

The filter method takes a User-Defined Function (UDF) that, when applied to an entire group, returns either True or False. The result of the filtermethod is then the subset of groups for which the UDF returned True.

Suppose we want to take only elements that belong to groups with a group sum greater than 2.

In [186]: sf = pd.Series([1, 1, 2, 3, 3, 3])

In [187]: sf.groupby(sf).filter(lambda x: x.sum() > 2) Out[187]: 3 3 4 3 5 3 dtype: int64

Another useful operation is filtering out elements that belong to groups with only a couple members.

In [188]: dff = pd.DataFrame({"A": np.arange(8), "B": list("aabbbbcc")})

In [189]: dff.groupby("B").filter(lambda x: len(x) > 2) Out[189]: A B 2 2 b 3 3 b 4 4 b 5 5 b

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.

In [190]: dff.groupby("B").filter(lambda x: len(x) > 2, dropna=False) Out[190]: A B 0 NaN NaN 1 NaN NaN 2 2.0 b 3 3.0 b 4 4.0 b 5 5.0 b 6 NaN NaN 7 NaN NaN

For DataFrames with multiple columns, filters should explicitly specify a column as the filter criterion.

In [191]: dff["C"] = np.arange(8)

In [192]: dff.groupby("B").filter(lambda x: len(x["C"]) > 2) Out[192]: A B C 2 2 b 2 3 3 b 3 4 4 b 4 5 5 b 5

Flexible apply#

Some operations on the grouped data might not fit into the aggregation, transformation, or filtration categories. For these, you can use the applyfunction.

Warning

apply has to try to infer from the result whether it should act as a reducer, transformer, or filter, depending on exactly what is passed to it. Thus the grouped column(s) may be included in the output or not. While it tries to intelligently guess how to behave, it can sometimes guess wrong.

Note

All of the examples in this section can be more reliably, and more efficiently, computed using other pandas functionality.

In [193]: df Out[193]: A B C D 0 foo one -0.575247 1.346061 1 bar one 0.254161 1.511763 2 foo two -1.143704 1.627081 3 bar three 0.215897 -0.990582 4 foo two 1.193555 -0.441652 5 bar two -0.077118 1.211526 6 foo one -0.408530 0.268520 7 foo three -0.862495 0.024580

In [194]: grouped = df.groupby("A")

could also just call .describe()

In [195]: grouped["C"].apply(lambda x: x.describe()) Out[195]: A
bar count 3.000000 mean 0.130980 std 0.181231 min -0.077118 25% 0.069390 ...
foo min -1.143704 25% -0.862495 50% -0.575247 75% -0.408530 max 1.193555 Name: C, Length: 16, dtype: float64

The dimension of the returned result can also change:

In [196]: grouped = df.groupby('A')['C']

In [197]: def f(group): .....: return pd.DataFrame({'original': group, .....: 'demeaned': group - group.mean()}) .....:

In [198]: grouped.apply(f) Out[198]: original demeaned A
bar 1 0.254161 0.123181 3 0.215897 0.084917 5 -0.077118 -0.208098 foo 0 -0.575247 -0.215962 2 -1.143704 -0.784420 4 1.193555 1.552839 6 -0.408530 -0.049245 7 -0.862495 -0.503211

apply on a Series can operate on a returned value from the applied function that is itself a series, and possibly upcast the result to a DataFrame:

In [199]: def f(x): .....: return pd.Series([x, x ** 2], index=["x", "x^2"]) .....:

In [200]: s = pd.Series(np.random.rand(5))

In [201]: s Out[201]: 0 0.582898 1 0.098352 2 0.001438 3 0.009420 4 0.815826 dtype: float64

In [202]: s.apply(f) Out[202]: x x^2 0 0.582898 0.339770 1 0.098352 0.009673 2 0.001438 0.000002 3 0.009420 0.000089 4 0.815826 0.665572

Similar to The aggregate() method, the resulting dtype will reflect that of the apply function. If the results from different groups have different dtypes, then a common dtype will be determined in the same way as DataFrame construction.

Control grouped column(s) placement with group_keys#

To control whether the grouped column(s) are included in the indices, you can use the argument group_keys which defaults to True. Compare

In [203]: df.groupby("A", group_keys=True).apply(lambda x: x, include_groups=False) Out[203]: B C D A
bar 1 one 0.254161 1.511763 3 three 0.215897 -0.990582 5 two -0.077118 1.211526 foo 0 one -0.575247 1.346061 2 two -1.143704 1.627081 4 two 1.193555 -0.441652 6 one -0.408530 0.268520 7 three -0.862495 0.024580

with

In [204]: df.groupby("A", group_keys=False).apply(lambda x: x, include_groups=False) Out[204]: B C D 0 one -0.575247 1.346061 1 one 0.254161 1.511763 2 two -1.143704 1.627081 3 three 0.215897 -0.990582 4 two 1.193555 -0.441652 5 two -0.077118 1.211526 6 one -0.408530 0.268520 7 three -0.862495 0.024580

Numba Accelerated Routines#

Added in version 1.1.

If Numba is installed as an optional dependency, the transform andaggregate methods support engine='numba' and engine_kwargs arguments. See enhancing performance with Numba for general usage of the arguments and performance considerations.

The function signature must start with values, index exactly as the data belonging to each group will be passed into values, and the group index will be passed into index.

Warning

When using engine='numba', there will be no “fall back” behavior internally. The group data and group index will be passed as NumPy arrays to the JITed user defined function, and no alternative execution attempts will be tried.

Other useful features#

Exclusion of non-numeric columns#

Again consider the example DataFrame we’ve been looking at:

In [205]: df Out[205]: A B C D 0 foo one -0.575247 1.346061 1 bar one 0.254161 1.511763 2 foo two -1.143704 1.627081 3 bar three 0.215897 -0.990582 4 foo two 1.193555 -0.441652 5 bar two -0.077118 1.211526 6 foo one -0.408530 0.268520 7 foo three -0.862495 0.024580

Suppose we wish to compute the standard deviation grouped by the Acolumn. There is a slight problem, namely that we don’t care about the data in column B because it is not numeric. You can avoid non-numeric columns by specifying numeric_only=True:

In [206]: df.groupby("A").std(numeric_only=True) Out[206]: C D A
bar 0.181231 1.366330 foo 0.912265 0.884785

Note that df.groupby('A').colname.std(). is more efficient thandf.groupby('A').std().colname. So if the result of an aggregation function is only needed over one column (here colname), it may be filtered_before_ applying the aggregation function.

In [207]: from decimal import Decimal

In [208]: df_dec = pd.DataFrame( .....: { .....: "id": [1, 2, 1, 2], .....: "int_column": [1, 2, 3, 4], .....: "dec_column": [ .....: Decimal("0.50"), .....: Decimal("0.15"), .....: Decimal("0.25"), .....: Decimal("0.40"), .....: ], .....: } .....: ) .....:

In [209]: df_dec.groupby(["id"])[["dec_column"]].sum() Out[209]: dec_column id
1 0.75 2 0.55

Handling of (un)observed Categorical values#

When using a Categorical grouper (as a single grouper, or as part of multiple groupers), the observed keyword controls whether to return a cartesian product of all possible groupers values (observed=False) or only those that are observed groupers (observed=True).

Show all values:

In [210]: pd.Series([1, 1, 1]).groupby( .....: pd.Categorical(["a", "a", "a"], categories=["a", "b"]), observed=False .....: ).count() .....: Out[210]: a 3 b 0 dtype: int64

Show only the observed values:

In [211]: pd.Series([1, 1, 1]).groupby( .....: pd.Categorical(["a", "a", "a"], categories=["a", "b"]), observed=True .....: ).count() .....: Out[211]: a 3 dtype: int64

The returned dtype of the grouped will always include all of the categories that were grouped.

In [212]: s = ( .....: pd.Series([1, 1, 1]) .....: .groupby(pd.Categorical(["a", "a", "a"], categories=["a", "b"]), observed=True) .....: .count() .....: ) .....:

In [213]: s.index.dtype Out[213]: CategoricalDtype(categories=['a', 'b'], ordered=False, categories_dtype=object)

NA group handling#

By NA, we are referring to any NA values, includingNA, NaN, NaT, and None. If there are any NA values in the grouping key, by default these will be excluded. In other words, any “NA group” will be dropped. You can include NA groups by specifying dropna=False.

In [214]: df = pd.DataFrame({"key": [1.0, 1.0, np.nan, 2.0, np.nan], "A": [1, 2, 3, 4, 5]})

In [215]: df Out[215]: key A 0 1.0 1 1 1.0 2 2 NaN 3 3 2.0 4 4 NaN 5

In [216]: df.groupby("key", dropna=True).sum() Out[216]: A key
1.0 3 2.0 4

In [217]: df.groupby("key", dropna=False).sum() Out[217]: A key
1.0 3 2.0 4 NaN 8

Grouping with ordered factors#

Categorical variables represented as instances of pandas’s Categorical class can be used as group keys. If so, the order of the levels will be preserved. Whenobserved=False and sort=False, any unobserved categories will be at the end of the result in order.

In [218]: days = pd.Categorical( .....: values=["Wed", "Mon", "Thu", "Mon", "Wed", "Sat"], .....: categories=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"], .....: ) .....:

In [219]: data = pd.DataFrame( .....: { .....: "day": days, .....: "workers": [3, 4, 1, 4, 2, 2], .....: } .....: ) .....:

In [220]: data Out[220]: day workers 0 Wed 3 1 Mon 4 2 Thu 1 3 Mon 4 4 Wed 2 5 Sat 2

In [221]: data.groupby("day", observed=False, sort=True).sum() Out[221]: workers day
Mon 8 Tue 0 Wed 5 Thu 1 Fri 0 Sat 2 Sun 0

In [222]: data.groupby("day", observed=False, sort=False).sum() Out[222]: workers day
Wed 5 Mon 8 Thu 1 Sat 2 Tue 0 Fri 0 Sun 0

Grouping with a grouper specification#

You may need to specify a bit more data to properly group. You can use the pd.Grouper to provide this local control.

In [223]: import datetime

In [224]: df = pd.DataFrame( .....: { .....: "Branch": "A A A A A A A B".split(), .....: "Buyer": "Carl Mark Carl Carl Joe Joe Joe Carl".split(), .....: "Quantity": [1, 3, 5, 1, 8, 1, 9, 3], .....: "Date": [ .....: datetime.datetime(2013, 1, 1, 13, 0), .....: datetime.datetime(2013, 1, 1, 13, 5), .....: datetime.datetime(2013, 10, 1, 20, 0), .....: datetime.datetime(2013, 10, 2, 10, 0), .....: datetime.datetime(2013, 10, 1, 20, 0), .....: datetime.datetime(2013, 10, 2, 10, 0), .....: datetime.datetime(2013, 12, 2, 12, 0), .....: datetime.datetime(2013, 12, 2, 14, 0), .....: ], .....: } .....: ) .....:

In [225]: df Out[225]: Branch Buyer Quantity Date 0 A Carl 1 2013-01-01 13:00:00 1 A Mark 3 2013-01-01 13:05:00 2 A Carl 5 2013-10-01 20:00:00 3 A Carl 1 2013-10-02 10:00:00 4 A Joe 8 2013-10-01 20:00:00 5 A Joe 1 2013-10-02 10:00:00 6 A Joe 9 2013-12-02 12:00:00 7 B Carl 3 2013-12-02 14:00:00

Groupby a specific column with the desired frequency. This is like resampling.

In [226]: df.groupby([pd.Grouper(freq="1ME", key="Date"), "Buyer"])[["Quantity"]].sum() Out[226]: Quantity Date Buyer
2013-01-31 Carl 1 Mark 3 2013-10-31 Carl 6 Joe 9 2013-12-31 Carl 3 Joe 9

When freq is specified, the object returned by pd.Grouper will be an instance of pandas.api.typing.TimeGrouper. When there is a column and index with the same name, you can use key to group by the column and levelto group by the index.

In [227]: df = df.set_index("Date")

In [228]: df["Date"] = df.index + pd.offsets.MonthEnd(2)

In [229]: df.groupby([pd.Grouper(freq="6ME", key="Date"), "Buyer"])[["Quantity"]].sum() Out[229]: Quantity Date Buyer
2013-02-28 Carl 1 Mark 3 2014-02-28 Carl 9 Joe 18

In [230]: df.groupby([pd.Grouper(freq="6ME", level="Date"), "Buyer"])[["Quantity"]].sum() Out[230]: Quantity Date Buyer
2013-01-31 Carl 1 Mark 3 2014-01-31 Carl 9 Joe 18

Taking the first rows of each group#

Just like for a DataFrame or Series you can call head and tail on a groupby:

In [231]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"])

In [232]: df Out[232]: A B 0 1 2 1 1 4 2 5 6

In [233]: g = df.groupby("A")

In [234]: g.head(1) Out[234]: A B 0 1 2 2 5 6

In [235]: g.tail(1) Out[235]: A B 1 1 4 2 5 6

This shows the first or last n rows from each group.

Taking the nth row of each group#

To select the nth item from each group, use DataFrameGroupBy.nth() orSeriesGroupBy.nth(). Arguments supplied can be any integer, lists of integers, slices, or lists of slices; see below for examples. When the nth element of a group does not exist an error is not raised; instead no corresponding rows are returned.

In general this operation acts as a filtration. In certain cases it will also return one row per group, making it also a reduction. However because in general it can return zero or multiple rows per group, pandas treats it as a filtration in all cases.

In [236]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])

In [237]: g = df.groupby("A")

In [238]: g.nth(0) Out[238]: A B 0 1 NaN 2 5 6.0

In [239]: g.nth(-1) Out[239]: A B 1 1 4.0 2 5 6.0

In [240]: g.nth(1) Out[240]: A B 1 1 4.0

If the nth element of a group does not exist, then no corresponding row is included in the result. In particular, if the specified n is larger than any group, the result will be an empty DataFrame.

In [241]: g.nth(5) Out[241]: Empty DataFrame Columns: [A, B] Index: []

If you want to select the nth not-null item, use the dropna kwarg. For a DataFrame this should be either 'any' or 'all' just like you would pass to dropna:

nth(0) is the same as g.first()

In [242]: g.nth(0, dropna="any") Out[242]: A B 1 1 4.0 2 5 6.0

In [243]: g.first() Out[243]: B A
1 4.0 5 6.0

nth(-1) is the same as g.last()

In [244]: g.nth(-1, dropna="any") Out[244]: A B 1 1 4.0 2 5 6.0

In [245]: g.last() Out[245]: B A
1 4.0 5 6.0

In [246]: g.B.nth(0, dropna="all") Out[246]: 1 4.0 2 6.0 Name: B, dtype: float64

You can also select multiple rows from each group by specifying multiple nth values as a list of ints.

In [247]: business_dates = pd.date_range(start="4/1/2014", end="6/30/2014", freq="B")

In [248]: df = pd.DataFrame(1, index=business_dates, columns=["a", "b"])

get the first, 4th, and last date index for each month

In [249]: df.groupby([df.index.year, df.index.month]).nth([0, 3, -1]) Out[249]: a b 2014-04-01 1 1 2014-04-04 1 1 2014-04-30 1 1 2014-05-01 1 1 2014-05-06 1 1 2014-05-30 1 1 2014-06-02 1 1 2014-06-05 1 1 2014-06-30 1 1

You may also use slices or lists of slices.

In [250]: df.groupby([df.index.year, df.index.month]).nth[1:] Out[250]: a b 2014-04-02 1 1 2014-04-03 1 1 2014-04-04 1 1 2014-04-07 1 1 2014-04-08 1 1 ... .. .. 2014-06-24 1 1 2014-06-25 1 1 2014-06-26 1 1 2014-06-27 1 1 2014-06-30 1 1

[62 rows x 2 columns]

In [251]: df.groupby([df.index.year, df.index.month]).nth[1:, :-1] Out[251]: a b 2014-04-01 1 1 2014-04-02 1 1 2014-04-03 1 1 2014-04-04 1 1 2014-04-07 1 1 ... .. .. 2014-06-24 1 1 2014-06-25 1 1 2014-06-26 1 1 2014-06-27 1 1 2014-06-30 1 1

[65 rows x 2 columns]

Enumerate group items#

To see the order in which each row appears within its group, use thecumcount method:

In [252]: dfg = pd.DataFrame(list("aaabba"), columns=["A"])

In [253]: dfg Out[253]: A 0 a 1 a 2 a 3 b 4 b 5 a

In [254]: dfg.groupby("A").cumcount() Out[254]: 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64

In [255]: dfg.groupby("A").cumcount(ascending=False) Out[255]: 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64

Enumerate groups#

To see the ordering of the groups (as opposed to the order of rows within a group given by cumcount) you can useDataFrameGroupBy.ngroup().

Note that the numbers given to the groups match the order in which the groups would be seen when iterating over the groupby object, not the order they are first observed.

In [256]: dfg = pd.DataFrame(list("aaabba"), columns=["A"])

In [257]: dfg Out[257]: A 0 a 1 a 2 a 3 b 4 b 5 a

In [258]: dfg.groupby("A").ngroup() Out[258]: 0 0 1 0 2 0 3 1 4 1 5 0 dtype: int64

In [259]: dfg.groupby("A").ngroup(ascending=False) Out[259]: 0 1 1 1 2 1 3 0 4 0 5 1 dtype: int64

Plotting#

Groupby also works with some plotting methods. In this case, suppose we suspect that the values in column 1 are 3 times higher on average in group “B”.

In [260]: np.random.seed(1234)

In [261]: df = pd.DataFrame(np.random.randn(50, 2))

In [262]: df["g"] = np.random.choice(["A", "B"], size=50)

In [263]: df.loc[df["g"] == "B", 1] += 3

We can easily visualize this with a boxplot:

In [264]: df.groupby("g").boxplot() Out[264]: A Axes(0.1,0.15;0.363636x0.75) B Axes(0.536364,0.15;0.363636x0.75) dtype: object

../_images/groupby_boxplot.png

The result of calling boxplot is a dictionary whose keys are the values of our grouping column g (“A” and “B”). The values of the resulting dictionary can be controlled by the return_type keyword of boxplot. See the visualization documentation for more.

Warning

For historical reasons, df.groupby("g").boxplot() is not equivalent to df.boxplot(by="g"). See here for an explanation.

Piping function calls#

Similar to the functionality provided by DataFrame and Series, functions that take GroupBy objects can be chained together using a pipe method to allow for a cleaner, more readable syntax. To read about .pipe in general terms, see here.

Combining .groupby and .pipe is often useful when you need to reuse GroupBy objects.

As an example, imagine having a DataFrame with columns for stores, products, revenue and quantity sold. We’d like to do a groupwise calculation of prices(i.e. revenue/quantity) per store and per product. We could do this in a multi-step operation, but expressing it in terms of piping can make the code more readable. First we set the data:

In [265]: n = 1000

In [266]: df = pd.DataFrame( .....: { .....: "Store": np.random.choice(["Store_1", "Store_2"], n), .....: "Product": np.random.choice(["Product_1", "Product_2"], n), .....: "Revenue": (np.random.random(n) * 50 + 10).round(2), .....: "Quantity": np.random.randint(1, 10, size=n), .....: } .....: ) .....:

In [267]: df.head(2) Out[267]: Store Product Revenue Quantity 0 Store_2 Product_1 26.12 1 1 Store_2 Product_1 28.86 1

We now find the prices per store/product.

In [268]: ( .....: df.groupby(["Store", "Product"]) .....: .pipe(lambda grp: grp.Revenue.sum() / grp.Quantity.sum()) .....: .unstack() .....: .round(2) .....: ) .....: Out[268]: Product Product_1 Product_2 Store
Store_1 6.82 7.05 Store_2 6.30 6.64

Piping can also be expressive when you want to deliver a grouped object to some arbitrary function, for example:

In [269]: def mean(groupby): .....: return groupby.mean() .....:

In [270]: df.groupby(["Store", "Product"]).pipe(mean) Out[270]: Revenue Quantity Store Product
Store_1 Product_1 34.622727 5.075758 Product_2 35.482815 5.029630 Store_2 Product_1 32.972837 5.237589 Product_2 34.684360 5.224000

Here mean takes a GroupBy object and finds the mean of the Revenue and Quantity columns respectively for each Store-Product combination. The mean function can be any function that takes in a GroupBy object; the .pipe will pass the GroupBy object as a parameter into the function you specify.

Examples#

Multi-column factorization#

By using DataFrameGroupBy.ngroup(), we can extract information about the groups in a way similar to factorize() (as described further in the reshaping API) but which applies naturally to multiple columns of mixed type and different sources. This can be useful as an intermediate categorical-like step in processing, when the relationships between the group rows are more important than their content, or as input to an algorithm which only accepts the integer encoding. (For more information about support in pandas for full categorical data, see the Categorical introduction and theAPI documentation.)

In [271]: dfg = pd.DataFrame({"A": [1, 1, 2, 3, 2], "B": list("aaaba")})

In [272]: dfg Out[272]: A B 0 1 a 1 1 a 2 2 a 3 3 b 4 2 a

In [273]: dfg.groupby(["A", "B"]).ngroup() Out[273]: 0 0 1 0 2 1 3 2 4 1 dtype: int64

In [274]: dfg.groupby(["A", [0, 0, 0, 1, 1]]).ngroup() Out[274]: 0 0 1 0 2 1 3 3 4 2 dtype: int64

Groupby by indexer to ‘resample’ data#

Resampling produces new hypothetical samples (resamples) from already existing observed data or from a model that generates data. These new samples are similar to the pre-existing samples.

In order for resample to work on indices that are non-datetimelike, the following procedure can be utilized.

In the following examples, df.index // 5 returns an integer array which is used to determine what gets selected for the groupby operation.

Note

The example below shows how we can downsample by consolidation of samples into fewer ones. Here by using df.index // 5, we are aggregating the samples in bins. By applying **std()**function, we aggregate the information contained in many samples into a small subset of values which is their standard deviation thereby reducing the number of samples.

In [275]: df = pd.DataFrame(np.random.randn(10, 2))

In [276]: df Out[276]: 0 1 0 -0.793893 0.321153 1 0.342250 1.618906 2 -0.975807 1.918201 3 -0.810847 -1.405919 4 -1.977759 0.461659 5 0.730057 -1.316938 6 -0.751328 0.528290 7 -0.257759 -1.081009 8 0.505895 -1.701948 9 -1.006349 0.020208

In [277]: df.index // 5 Out[277]: Index([0, 0, 0, 0, 0, 1, 1, 1, 1, 1], dtype='int64')

In [278]: df.groupby(df.index // 5).std() Out[278]: 0 1 0 0.823647 1.312912 1 0.760109 0.942941

Returning a Series to propagate names#

Group DataFrame columns, compute a set of metrics and return a named Series. The Series name is used as the name for the column index. This is especially useful in conjunction with reshaping operations such as stacking, in which the column index name will be used as the name of the inserted column:

In [279]: df = pd.DataFrame( .....: { .....: "a": [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], .....: "b": [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1], .....: "c": [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], .....: "d": [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], .....: } .....: ) .....:

In [280]: def compute_metrics(x): .....: result = {"b_sum": x["b"].sum(), "c_mean": x["c"].mean()} .....: return pd.Series(result, name="metrics") .....:

In [281]: result = df.groupby("a").apply(compute_metrics, include_groups=False)

In [282]: result Out[282]: metrics b_sum c_mean a
0 2.0 0.5 1 2.0 0.5 2 2.0 0.5

In [283]: result.stack(future_stack=True) Out[283]: a metrics 0 b_sum 2.0 c_mean 0.5 1 b_sum 2.0 c_mean 0.5 2 b_sum 2.0 c_mean 0.5 dtype: float64