pandas.MultiIndex — pandas 0.18.1 documentation (original) (raw)

all([other])

any([other])

append(other)

Append a collection of Index options together

argmax([axis])

return a ndarray of the maximum argument indexer

argmin([axis])

return a ndarray of the minimum argument indexer

argsort(*args, **kwargs)

asof(label)

For a sorted index, return the most recent label up to and including the passed label.

asof_locs(where, mask)

where : array of timestamps

astype(dtype)

copy([names, dtype, levels, labels, deep, ...])

Make a copy of this object.

delete(loc)

Make new index with passed location deleted

diff(*args, **kwargs)

difference(other)

Compute sorted set difference of two MultiIndex objects

drop(labels[, level, errors])

Make new MultiIndex with passed list of labels deleted

drop_duplicates(*args, **kwargs)

Return Index with duplicate values removed

droplevel([level])

Return Index with requested level removed.

duplicated(*args, **kwargs)

Return boolean np.array denoting duplicate values

equal_levels(other)

Return True if the levels of both MultiIndex objects are the same

equals(other)

Determines if two MultiIndex objects have the same labeling information

factorize([sort, na_sentinel])

Encode the object as an enumerated type or categorical variable

fillna([value, downcast])

Fill NA/NaN values with the specified value

format([space, sparsify, adjoin, names, ...])

from_arrays(arrays[, sortorder, names])

Convert arrays to MultiIndex

from_product(iterables[, sortorder, names])

Make a MultiIndex from the cartesian product of multiple iterables

from_tuples(tuples[, sortorder, names])

Convert list of tuples to MultiIndex

get_duplicates()

get_indexer(target[, method, limit, tolerance])

Compute indexer and mask for new index given the current index.

get_indexer_for(target, **kwargs)

guaranteed return of an indexer even when non-unique

get_indexer_non_unique(target)

return an indexer suitable for taking from a non unique index

get_level_values(level)

Return vector of label values for requested level, equal to the length

get_loc(key[, method])

Get integer location, slice or boolean mask for requested label or tuple.

get_loc_level(key[, level, drop_level])

Get integer location slice for requested label or tuple

get_locs(tup)

Given a tuple of slices/lists/labels/boolean indexer to a level-wise

get_major_bounds([start, end, step, kind])

For an ordered MultiIndex, compute the slice locations for input labels.

get_slice_bound(label, side, kind)

get_value(series, key)

get_values()

return the underlying data as an ndarray

groupby(to_groupby)

Group the index labels by a given array of values.

holds_integer()

identical(other)

Similar to equals, but check that other comparable attributes are

insert(loc, item)

Make new MultiIndex inserting new item at location

intersection(other)

Form the intersection of two MultiIndex objects, sorting if possible

is_(other)

More flexible, faster check like is but that works through views

is_boolean()

is_categorical()

is_floating()

is_integer()

is_lexsorted()

Return True if the labels are lexicographically sorted

is_lexsorted_for_tuple(tup)

Return True if we are correctly lexsorted given the passed tuple

is_mixed()

is_numeric()

is_object()

is_type_compatible(kind)

isin(values[, level])

Compute boolean array of whether each index value is found in the passed set of values.

item()

return the first element of the underlying data as a python

join(other[, how, level, return_indexers])

this is an internal non-public method

map(mapper)

Apply mapper function to its values.

max()

The maximum value of the object

memory_usage([deep])

Memory usage of my values

min()

The minimum value of the object

nunique([dropna])

Return number of unique elements in the object.

order([return_indexer, ascending])

Return sorted copy of Index

putmask(mask, value)

return a new Index of the values set with the mask

ravel([order])

return an ndarray of the flattened values of the underlying data

reindex(target[, method, level, limit, ...])

Create index with target’s values (move/add/delete values as necessary)

rename(names[, level, inplace])

Set new names on index.

reorder_levels(order)

Rearrange levels using input order.

repeat(n, *args, **kwargs)

searchsorted(key[, side, sorter])

Find indices where elements should be inserted to maintain order.

set_labels(labels[, level, inplace, ...])

Set new labels on MultiIndex.

set_levels(levels[, level, inplace, ...])

Set new levels on MultiIndex.

set_names(names[, level, inplace])

Set new names on index.

set_value(arr, key, value)

Fast lookup of value from 1-dimensional ndarray.

shift([periods, freq])

Shift Index containing datetime objects by input number of periods and

slice_indexer([start, end, step, kind])

For an ordered Index, compute the slice indexer for input labels and

slice_locs([start, end, step, kind])

For an ordered MultiIndex, compute the slice locations for input labels.

sort(*args, **kwargs)

sort_values([return_indexer, ascending])

Return sorted copy of Index

sortlevel([level, ascending, sort_remaining])

Sort MultiIndex at the requested level.

str

alias of StringMethods

summary([name])

swaplevel([i, j])

Swap level i with level j.

sym_diff(*args, **kwargs)

symmetric_difference(other[, result_name])

Compute the sorted symmetric difference of two Index objects.

take(indices[, axis, allow_fill, fill_value])

return a new %(klass)s of the values selected by the indices

to_datetime([dayfirst])

For an Index containing strings or datetime.datetime objects, attempt

to_hierarchical(n_repeat[, n_shuffle])

Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle.

to_native_types([slicer])

slice and dice then format

to_series(**kwargs)

Create a Series with both index and values equal to the index keys

tolist()

return a list of the Index values

transpose(*args, **kwargs)

return the transpose, which is by definition self

truncate([before, after])

Slice index between two labels / tuples, return new MultiIndex

union(other)

Form the union of two MultiIndex objects, sorting if possible

unique()

Return array of unique values in the object.

value_counts([normalize, sort, ascending, ...])

Returns object containing counts of unique values.

view([cls])

this is defined as a copy with the same identity