Working with missing data — pandas 0.18.1 documentation (original) (raw)

In this section, we will discuss missing (also referred to as NA) values in pandas.

Missing data basics

When / why does data become missing?

Some might quibble over our usage of missing. By “missing” we simply meannull or “not present for whatever reason”. Many data sets simply arrive with missing data, either because it exists and was not collected or it never existed. For example, in a collection of financial time series, some of the time series might start on different dates. Thus, values prior to the start date would generally be marked as missing.

In pandas, one of the most common ways that missing data is introduced into a data set is by reindexing. For example

In [1]: df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'], ...: columns=['one', 'two', 'three']) ...:

In [2]: df['four'] = 'bar'

In [3]: df['five'] = df['one'] > 0

In [4]: df Out[4]: one two three four five a 0.469112 -0.282863 -1.509059 bar True c -1.135632 1.212112 -0.173215 bar False e 0.119209 -1.044236 -0.861849 bar True f -2.104569 -0.494929 1.071804 bar False h 0.721555 -0.706771 -1.039575 bar True

In [5]: df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

In [6]: df2 Out[6]: one two three four five a 0.469112 -0.282863 -1.509059 bar True b NaN NaN NaN NaN NaN c -1.135632 1.212112 -0.173215 bar False d NaN NaN NaN NaN NaN e 0.119209 -1.044236 -0.861849 bar True f -2.104569 -0.494929 1.071804 bar False g NaN NaN NaN NaN NaN h 0.721555 -0.706771 -1.039575 bar True

Values considered “missing”

As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While NaN is the default missing value marker for reasons of computational speed and convenience, we need to be able to easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases, however, the Python None will arise and we wish to also consider that “missing” or “null”.

Note

Prior to version v0.10.0 inf and -inf were also considered to be “null” in computations. This is no longer the case by default; use the mode.use_inf_as_null option to recover it.

To make detecting missing values easier (and across different array dtypes), pandas provides the isnull() andnotnull() functions, which are also methods onSeries and DataFrame objects:

In [7]: df2['one'] Out[7]: a 0.469112 b NaN c -1.135632 d NaN e 0.119209 f -2.104569 g NaN h 0.721555 Name: one, dtype: float64

In [8]: pd.isnull(df2['one']) Out[8]: a False b True c False d True e False f False g True h False Name: one, dtype: bool

In [9]: df2['four'].notnull() Out[9]: a True b False c True d False e True f True g False h True Name: four, dtype: bool

In [10]: df2.isnull() Out[10]: one two three four five a False False False False False b True True True True True c False False False False False d True True True True True e False False False False False f False False False False False g True True True True True h False False False False False

Warning

One has to be mindful that in python (and numpy), the nan's don’t compare equal, but None's do. Note that Pandas/numpy uses the fact that np.nan != np.nan, and treats None like np.nan.

In [11]: None == None Out[11]: True

In [12]: np.nan == np.nan Out[12]: False

So as compared to above, a scalar equality comparison versus a None/np.nan doesn’t provide useful information.

In [13]: df2['one'] == np.nan Out[13]: a False b False c False d False e False f False g False h False Name: one, dtype: bool

Datetimes

For datetime64[ns] types, NaT represents missing values. This is a pseudo-native sentinel value that can be represented by numpy in a singular dtype (datetime64[ns]). pandas objects provide intercompatibility between NaT and NaN.

In [14]: df2 = df.copy()

In [15]: df2['timestamp'] = pd.Timestamp('20120101')

In [16]: df2 Out[16]: one two three four five timestamp a 0.469112 -0.282863 -1.509059 bar True 2012-01-01 c -1.135632 1.212112 -0.173215 bar False 2012-01-01 e 0.119209 -1.044236 -0.861849 bar True 2012-01-01 f -2.104569 -0.494929 1.071804 bar False 2012-01-01 h 0.721555 -0.706771 -1.039575 bar True 2012-01-01

In [17]: df2.ix[['a','c','h'],['one','timestamp']] = np.nan

In [18]: df2 Out[18]: one two three four five timestamp a NaN -0.282863 -1.509059 bar True NaT c NaN 1.212112 -0.173215 bar False NaT e 0.119209 -1.044236 -0.861849 bar True 2012-01-01 f -2.104569 -0.494929 1.071804 bar False 2012-01-01 h NaN -0.706771 -1.039575 bar True NaT

In [19]: df2.get_dtype_counts() Out[19]: bool 1 datetime64[ns] 1 float64 3 object 1 dtype: int64

Inserting missing data

You can insert missing values by simply assigning to containers. The actual missing value used will be chosen based on the dtype.

For example, numeric containers will always use NaN regardless of the missing value type chosen:

In [20]: s = pd.Series([1, 2, 3])

In [21]: s.loc[0] = None

In [22]: s Out[22]: 0 NaN 1 2.0 2 3.0 dtype: float64

Likewise, datetime containers will always use NaT.

For object containers, pandas will use the value given:

In [23]: s = pd.Series(["a", "b", "c"])

In [24]: s.loc[0] = None

In [25]: s.loc[1] = np.nan

In [26]: s Out[26]: 0 None 1 NaN 2 c dtype: object

Calculations with missing data

Missing values propagate naturally through arithmetic operations between pandas objects.

In [27]: a Out[27]: one two a NaN -0.282863 c NaN 1.212112 e 0.119209 -1.044236 f -2.104569 -0.494929 h -2.104569 -0.706771

In [28]: b Out[28]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e 0.119209 -1.044236 -0.861849 f -2.104569 -0.494929 1.071804 h NaN -0.706771 -1.039575

In [29]: a + b Out[29]: one three two a NaN NaN -0.565727 c NaN NaN 2.424224 e 0.238417 NaN -2.088472 f -4.209138 NaN -0.989859 h NaN NaN -1.413542

The descriptive statistics and computational methods discussed in thedata structure overview (and listed here and here) are all written to account for missing data. For example:

In [30]: df Out[30]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e 0.119209 -1.044236 -0.861849 f -2.104569 -0.494929 1.071804 h NaN -0.706771 -1.039575

In [31]: df['one'].sum() Out[31]: -1.9853605075978744

In [32]: df.mean(1) Out[32]: a -0.895961 c 0.519449 e -0.595625 f -0.509232 h -0.873173 dtype: float64

In [33]: df.cumsum() Out[33]: one two three a NaN -0.282863 -1.509059 c NaN 0.929249 -1.682273 e 0.119209 -0.114987 -2.544122 f -1.985361 -0.609917 -1.472318 h NaN -1.316688 -2.511893

NA values in GroupBy

NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example:

In [34]: df Out[34]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e 0.119209 -1.044236 -0.861849 f -2.104569 -0.494929 1.071804 h NaN -0.706771 -1.039575

In [35]: df.groupby('one').mean() Out[35]: two three one
-2.104569 -0.494929 1.071804 0.119209 -1.044236 -0.861849

See the groupby section here for more information.

Cleaning / filling missing data

pandas objects are equipped with various data manipulation methods for dealing with missing data.

Filling missing values: fillna

The fillna function can “fill in” NA values with non-null data in a couple of ways, which we illustrate:

Replace NA with a scalar value

In [36]: df2 Out[36]: one two three four five timestamp a NaN -0.282863 -1.509059 bar True NaT c NaN 1.212112 -0.173215 bar False NaT e 0.119209 -1.044236 -0.861849 bar True 2012-01-01 f -2.104569 -0.494929 1.071804 bar False 2012-01-01 h NaN -0.706771 -1.039575 bar True NaT

In [37]: df2.fillna(0) Out[37]: one two three four five timestamp a 0.000000 -0.282863 -1.509059 bar True 1970-01-01 c 0.000000 1.212112 -0.173215 bar False 1970-01-01 e 0.119209 -1.044236 -0.861849 bar True 2012-01-01 f -2.104569 -0.494929 1.071804 bar False 2012-01-01 h 0.000000 -0.706771 -1.039575 bar True 1970-01-01

In [38]: df2['four'].fillna('missing') Out[38]: a bar c bar e bar f bar h bar Name: four, dtype: object

Fill gaps forward or backward

Using the same filling arguments as reindexing, we can propagate non-null values forward or backward:

In [39]: df Out[39]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e 0.119209 -1.044236 -0.861849 f -2.104569 -0.494929 1.071804 h NaN -0.706771 -1.039575

In [40]: df.fillna(method='pad') Out[40]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e 0.119209 -1.044236 -0.861849 f -2.104569 -0.494929 1.071804 h -2.104569 -0.706771 -1.039575

Limit the amount of filling

If we only want consecutive gaps filled up to a certain number of data points, we can use the limit keyword:

In [41]: df Out[41]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e NaN NaN NaN f NaN NaN NaN h NaN -0.706771 -1.039575

In [42]: df.fillna(method='pad', limit=1) Out[42]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e NaN 1.212112 -0.173215 f NaN NaN NaN h NaN -0.706771 -1.039575

To remind you, these are the available filling methods:

Method Action
pad / ffill Fill values forward
bfill / backfill Fill values backward

With time series data, using pad/ffill is extremely common so that the “last known value” is available at every time point.

The ffill() function is equivalent to fillna(method='ffill')and bfill() is equivalent to fillna(method='bfill')

Filling with a PandasObject

New in version 0.12.

You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column.

In [43]: dff = pd.DataFrame(np.random.randn(10,3), columns=list('ABC'))

In [44]: dff.iloc[3:5,0] = np.nan

In [45]: dff.iloc[4:6,1] = np.nan

In [46]: dff.iloc[5:8,2] = np.nan

In [47]: dff Out[47]: A B C 0 0.271860 -0.424972 0.567020 1 0.276232 -1.087401 -0.673690 2 0.113648 -1.478427 0.524988 3 NaN 0.577046 -1.715002 4 NaN NaN -1.157892 5 -1.344312 NaN NaN 6 -0.109050 1.643563 NaN 7 0.357021 -0.674600 NaN 8 -0.968914 -1.294524 0.413738 9 0.276662 -0.472035 -0.013960

In [48]: dff.fillna(dff.mean()) Out[48]: A B C 0 0.271860 -0.424972 0.567020 1 0.276232 -1.087401 -0.673690 2 0.113648 -1.478427 0.524988 3 -0.140857 0.577046 -1.715002 4 -0.140857 -0.401419 -1.157892 5 -1.344312 -0.401419 -0.293543 6 -0.109050 1.643563 -0.293543 7 0.357021 -0.674600 -0.293543 8 -0.968914 -1.294524 0.413738 9 0.276662 -0.472035 -0.013960

In [49]: dff.fillna(dff.mean()['B':'C']) Out[49]: A B C 0 0.271860 -0.424972 0.567020 1 0.276232 -1.087401 -0.673690 2 0.113648 -1.478427 0.524988 3 NaN 0.577046 -1.715002 4 NaN -0.401419 -1.157892 5 -1.344312 -0.401419 -0.293543 6 -0.109050 1.643563 -0.293543 7 0.357021 -0.674600 -0.293543 8 -0.968914 -1.294524 0.413738 9 0.276662 -0.472035 -0.013960

New in version 0.13.

Same result as above, but is aligning the ‘fill’ value which is a Series in this case.

In [50]: dff.where(pd.notnull(dff), dff.mean(), axis='columns') Out[50]: A B C 0 0.271860 -0.424972 0.567020 1 0.276232 -1.087401 -0.673690 2 0.113648 -1.478427 0.524988 3 -0.140857 0.577046 -1.715002 4 -0.140857 -0.401419 -1.157892 5 -1.344312 -0.401419 -0.293543 6 -0.109050 1.643563 -0.293543 7 0.357021 -0.674600 -0.293543 8 -0.968914 -1.294524 0.413738 9 0.276662 -0.472035 -0.013960

Dropping axis labels with missing data: dropna

You may wish to simply exclude labels from a data set which refer to missing data. To do this, use the dropna method:

In [51]: df Out[51]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e NaN 0.000000 0.000000 f NaN 0.000000 0.000000 h NaN -0.706771 -1.039575

In [52]: df.dropna(axis=0) Out[52]: Empty DataFrame Columns: [one, two, three] Index: []

In [53]: df.dropna(axis=1) Out[53]: two three a -0.282863 -1.509059 c 1.212112 -0.173215 e 0.000000 0.000000 f 0.000000 0.000000 h -0.706771 -1.039575

In [54]: df['one'].dropna() Out[54]: Series([], Name: one, dtype: float64)

Series.dropna is a simpler method as it only has one axis to consider. DataFrame.dropna has considerably more options than Series.dropna, which can be examined in the API.

Interpolation

New in version 0.13.0: interpolate(), and interpolate() have revamped interpolation methods and functionality.

New in version 0.17.0: The limit_direction keyword argument was added.

Both Series and Dataframe objects have an interpolate method that, by default, performs linear interpolation at missing datapoints.

In [55]: ts Out[55]: 2000-01-31 0.469112 2000-02-29 NaN 2000-03-31 NaN 2000-04-28 NaN 2000-05-31 NaN 2000-06-30 NaN 2000-07-31 NaN ...
2007-10-31 -3.305259 2007-11-30 -5.485119 2007-12-31 -6.854968 2008-01-31 -7.809176 2008-02-29 -6.346480 2008-03-31 -8.089641 2008-04-30 -8.916232 Freq: BM, dtype: float64

In [56]: ts.count() Out[56]: 61

In [57]: ts.interpolate().count() Out[57]: 100

In [58]: ts.interpolate().plot() Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x135238210>

_images/series_interpolate.png

Index aware interpolation is available via the method keyword:

In [59]: ts2 Out[59]: 2000-01-31 0.469112 2000-02-29 NaN 2002-07-31 -5.689738 2005-01-31 NaN 2008-04-30 -8.916232 dtype: float64

In [60]: ts2.interpolate() Out[60]: 2000-01-31 0.469112 2000-02-29 -2.610313 2002-07-31 -5.689738 2005-01-31 -7.302985 2008-04-30 -8.916232 dtype: float64

In [61]: ts2.interpolate(method='time') Out[61]: 2000-01-31 0.469112 2000-02-29 0.273272 2002-07-31 -5.689738 2005-01-31 -7.095568 2008-04-30 -8.916232 dtype: float64

For a floating-point index, use method='values':

In [62]: ser Out[62]: 0.0 0.0 1.0 NaN 10.0 10.0 dtype: float64

In [63]: ser.interpolate() Out[63]: 0.0 0.0 1.0 5.0 10.0 10.0 dtype: float64

In [64]: ser.interpolate(method='values') Out[64]: 0.0 0.0 1.0 1.0 10.0 10.0 dtype: float64

You can also interpolate with a DataFrame:

In [65]: df = pd.DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8], ....: 'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]}) ....:

In [66]: df Out[66]: A B 0 1.0 0.25 1 2.1 NaN 2 NaN NaN 3 4.7 4.00 4 5.6 12.20 5 6.8 14.40

In [67]: df.interpolate() Out[67]: A B 0 1.0 0.25 1 2.1 1.50 2 3.4 2.75 3 4.7 4.00 4 5.6 12.20 5 6.8 14.40

The method argument gives access to fancier interpolation methods. If you have scipy installed, you can set pass the name of a 1-d interpolation routine to method. You’ll want to consult the full scipy interpolation documentation and reference guide for details. The appropriate interpolation method will depend on the type of data you are working with.

Warning

These methods require scipy.

In [68]: df.interpolate(method='barycentric') Out[68]: A B 0 1.00 0.250 1 2.10 -7.660 2 3.53 -4.515 3 4.70 4.000 4 5.60 12.200 5 6.80 14.400

In [69]: df.interpolate(method='pchip') Out[69]: A B 0 1.00000 0.250000 1 2.10000 0.672808 2 3.43454 1.928950 3 4.70000 4.000000 4 5.60000 12.200000 5 6.80000 14.400000

In [70]: df.interpolate(method='akima') Out[70]: A B 0 1.000000 0.250000 1 2.100000 -0.873316 2 3.406667 0.320034 3 4.700000 4.000000 4 5.600000 12.200000 5 6.800000 14.400000

When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation:

In [71]: df.interpolate(method='spline', order=2) Out[71]: A B 0 1.000000 0.250000 1 2.100000 -0.428598 2 3.404545 1.206900 3 4.700000 4.000000 4 5.600000 12.200000 5 6.800000 14.400000

In [72]: df.interpolate(method='polynomial', order=2) Out[72]: A B 0 1.000000 0.250000 1 2.100000 -4.161538 2 3.547059 -2.911538 3 4.700000 4.000000 4 5.600000 12.200000 5 6.800000 14.400000

Compare several methods:

In [73]: np.random.seed(2)

In [74]: ser = pd.Series(np.arange(1, 10.1, .25)**2 + np.random.randn(37))

In [75]: bad = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])

In [76]: ser[bad] = np.nan

In [77]: methods = ['linear', 'quadratic', 'cubic']

In [78]: df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods})

In [79]: df.plot() Out[79]: <matplotlib.axes._subplots.AxesSubplot at 0x1353432d0>

_images/compare_interpolations.png

Another use case is interpolation at new values. Suppose you have 100 observations from some distribution. And let’s suppose that you’re particularly interested in what’s happening around the middle. You can mix pandas’ reindex and interpolate methods to interpolate at the new values.

In [80]: ser = pd.Series(np.sort(np.random.uniform(size=100)))

interpolate at new_index

In [81]: new_index = ser.index | pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])

In [82]: interp_s = ser.reindex(new_index).interpolate(method='pchip')

In [83]: interp_s[49:51] Out[83]: 49.00 0.471410 49.25 0.476841 49.50 0.481780 49.75 0.485998 50.00 0.489266 50.25 0.491814 50.50 0.493995 50.75 0.495763 51.00 0.497074 dtype: float64

Interpolation Limits

Like other pandas fill methods, interpolate accepts a limit keyword argument. Use this argument to limit the number of consecutive interpolations, keeping NaN values for interpolations that are too far from the last valid observation:

In [84]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13])

In [85]: ser.interpolate(limit=2) Out[85]: 0 NaN 1 NaN 2 5.0 3 7.0 4 9.0 5 NaN 6 13.0 dtype: float64

By default, limit applies in a forward direction, so that only NaNvalues after a non-NaN value can be filled. If you provide 'backward' or'both' for the limit_direction keyword argument, you can fill NaNvalues before non-NaN values, or both before and after non-NaN values, respectively:

In [86]: ser.interpolate(limit=1) # limit_direction == 'forward' Out[86]: 0 NaN 1 NaN 2 5.0 3 7.0 4 NaN 5 NaN 6 13.0 dtype: float64

In [87]: ser.interpolate(limit=1, limit_direction='backward') Out[87]: 0 NaN 1 5.0 2 5.0 3 NaN 4 NaN 5 11.0 6 13.0 dtype: float64

In [88]: ser.interpolate(limit=1, limit_direction='both') Out[88]: 0 NaN 1 5.0 2 5.0 3 7.0 4 NaN 5 11.0 6 13.0 dtype: float64

Replacing Generic Values

Often times we want to replace arbitrary values with other values. New in v0.8 is the replace method in Series/DataFrame that provides an efficient yet flexible way to perform such replacements.

For a Series, you can replace a single value or a list of values by another value:

In [89]: ser = pd.Series([0., 1., 2., 3., 4.])

In [90]: ser.replace(0, 5) Out[90]: 0 5.0 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64

You can replace a list of values by a list of other values:

In [91]: ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) Out[91]: 0 4.0 1 3.0 2 2.0 3 1.0 4 0.0 dtype: float64

You can also specify a mapping dict:

In [92]: ser.replace({0: 10, 1: 100}) Out[92]: 0 10.0 1 100.0 2 2.0 3 3.0 4 4.0 dtype: float64

For a DataFrame, you can specify individual values by column:

In [93]: df = pd.DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]})

In [94]: df.replace({'a': 0, 'b': 5}, 100) Out[94]: a b 0 100 100 1 1 6 2 2 7 3 3 8 4 4 9

Instead of replacing with specified values, you can treat all given values as missing and interpolate over them:

In [95]: ser.replace([1, 2, 3], method='pad') Out[95]: 0 0.0 1 0.0 2 0.0 3 0.0 4 4.0 dtype: float64

String/Regular Expression Replacement

Note

Python strings prefixed with the r character such as r'hello world'are so-called “raw” strings. They have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be interpreted as an escaped backslash, e.g., r'\' == '\\'. You should read about themif this is unclear.

Replace the ‘.’ with nan (str -> str)

In [96]: d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', np.nan, 'd']}

In [97]: df = pd.DataFrame(d)

In [98]: df.replace('.', np.nan) Out[98]: a b c 0 0 a a 1 1 b b 2 2 NaN NaN 3 3 NaN d

Now do it with a regular expression that removes surrounding whitespace (regex -> regex)

In [99]: df.replace(r'\s.\s', np.nan, regex=True) Out[99]: a b c 0 0 a a 1 1 b b 2 2 NaN NaN 3 3 NaN d

Replace a few different values (list -> list)

In [100]: df.replace(['a', '.'], ['b', np.nan]) Out[100]: a b c 0 0 b b 1 1 b b 2 2 NaN NaN 3 3 NaN d

list of regex -> list of regex

In [101]: df.replace([r'.', r'(a)'], ['dot', '\1stuff'], regex=True) Out[101]: a b c 0 0 stuff stuff 1 1 b b 2 2 dot NaN 3 3 dot d

Only search in column 'b' (dict -> dict)

In [102]: df.replace({'b': '.'}, {'b': np.nan}) Out[102]: a b c 0 0 a a 1 1 b b 2 2 NaN NaN 3 3 NaN d

Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict)

In [103]: df.replace({'b': r'\s.\s'}, {'b': np.nan}, regex=True) Out[103]: a b c 0 0 a a 1 1 b b 2 2 NaN NaN 3 3 NaN d

You can pass nested dictionaries of regular expressions that use regex=True

In [104]: df.replace({'b': {'b': r''}}, regex=True) Out[104]: a b c 0 0 a a 1 1 b 2 2 . NaN 3 3 . d

or you can pass the nested dictionary like so

In [105]: df.replace(regex={'b': {r'\s.\s': np.nan}}) Out[105]: a b c 0 0 a a 1 1 b b 2 2 NaN NaN 3 3 NaN d

You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works for lists as well

In [106]: df.replace({'b': r'\s*(.)\s*'}, {'b': r'\1ty'}, regex=True) Out[106]: a b c 0 0 a a 1 1 b b 2 2 .ty NaN 3 3 .ty d

You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex -> regex)

In [107]: df.replace([r'\s.\s', r'a|b'], np.nan, regex=True) Out[107]: a b c 0 0 NaN NaN 1 1 NaN NaN 2 2 NaN NaN 3 3 NaN d

All of the regular expression examples can also be passed with theto_replace argument as the regex argument. In this case the valueargument must be passed explicitly by name or regex must be a nested dictionary. The previous example, in this case, would then be

In [108]: df.replace(regex=[r'\s.\s', r'a|b'], value=np.nan) Out[108]: a b c 0 0 NaN NaN 1 1 NaN NaN 2 2 NaN NaN 3 3 NaN d

This can be convenient if you do not want to pass regex=True every time you want to use a regular expression.

Note

Anywhere in the above replace examples that you see a regular expression a compiled regular expression is valid as well.

Numeric Replacement

Similar to DataFrame.fillna

In [109]: df = pd.DataFrame(np.random.randn(10, 2))

In [110]: df[np.random.rand(df.shape[0]) > 0.5] = 1.5

In [111]: df.replace(1.5, np.nan) Out[111]: 0 1 0 -0.844214 -1.021415 1 0.432396 -0.323580 2 0.423825 0.799180 3 1.262614 0.751965 4 NaN NaN 5 NaN NaN 6 -0.498174 -1.060799 7 0.591667 -0.183257 8 1.019855 -1.482465 9 NaN NaN

Replacing more than one value via lists works as well

In [112]: df00 = df.values[0, 0]

In [113]: df.replace([1.5, df00], [np.nan, 'a']) Out[113]: 0 1 0 a -1.021415 1 0.432396 -0.323580 2 0.423825 0.799180 3 1.26261 0.751965 4 NaN NaN 5 NaN NaN 6 -0.498174 -1.060799 7 0.591667 -0.183257 8 1.01985 -1.482465 9 NaN NaN

In [114]: df[1].dtype Out[114]: dtype('float64')

You can also operate on the DataFrame in place

In [115]: df.replace(1.5, np.nan, inplace=True)

Warning

When replacing multiple bool or datetime64 objects, the first argument to replace (to_replace) must match the type of the value being replaced type. For example,

s = pd.Series([True, False, True]) s.replace({'a string': 'new value', True: False}) # raises

TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

will raise a TypeError because one of the dict keys is not of the correct type for replacement.

However, when replacing a single object such as,

In [116]: s = pd.Series([True, False, True])

In [117]: s.replace('a string', 'another string') Out[117]: 0 True 1 False 2 True dtype: bool

the original NDFrame object will be returned untouched. We’re working on unifying this API, but for backwards compatibility reasons we cannot break the latter behavior. See GH6354 for more details.

Missing data casting rules and indexing

While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data. Until we can switch to using a native NA type in NumPy, we’ve established some “casting rules” when reindexing will cause missing data to be introduced into, say, a Series or DataFrame. Here they are:

data type Cast to
integer float
boolean object
float no cast
object no cast

For example:

In [118]: s = pd.Series(np.random.randn(5), index=[0, 2, 4, 6, 7])

In [119]: s > 0 Out[119]: 0 True 2 True 4 True 6 True 7 True dtype: bool

In [120]: (s > 0).dtype Out[120]: dtype('bool')

In [121]: crit = (s > 0).reindex(list(range(8)))

In [122]: crit Out[122]: 0 True 1 NaN 2 True 3 NaN 4 True 5 NaN 6 True 7 True dtype: object

In [123]: crit.dtype Out[123]: dtype('O')

Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector contains NAs, an exception will be generated:

In [124]: reindexed = s.reindex(list(range(8))).fillna(0)

In [125]: reindexed[crit]

ValueError Traceback (most recent call last) in () ----> 1 reindexed[crit]

/Users/tom.augspurger/miniconda3/envs/docs/lib/python2.7/site-packages/pandas/pandas/core/series.py in getitem(self, key) 619 key = list(key) 620 --> 621 if is_bool_indexer(key): 622 key = check_bool_indexer(self.index, key) 623

/Users/tom.augspurger/miniconda3/envs/docs/lib/python2.7/site-packages/pandas/pandas/core/common.pyc in is_bool_indexer(key) 1208 if not lib.is_bool_array(key): 1209 if isnull(key).any(): -> 1210 raise ValueError('cannot index with vector containing ' 1211 'NA / NaN values') 1212 return False

ValueError: cannot index with vector containing NA / NaN values

However, these can be filled in using fillna and it will work fine:

In [126]: reindexed[crit.fillna(False)] Out[126]: 0 0.126504 2 0.696198 4 0.697416 6 0.601516 7 0.003659 dtype: float64

In [127]: reindexed[crit.fillna(True)] Out[127]: 0 0.126504 1 0.000000 2 0.696198 3 0.000000 4 0.697416 5 0.000000 6 0.601516 7 0.003659 dtype: float64