Reshaping and Pivot Tables — pandas 0.18.1 documentation (original) (raw)

Reshaping by pivoting DataFrame objects

Data is often stored in CSV files or databases in so-called “stacked” or “record” format:

In [1]: df Out[1]: date variable value 0 2000-01-03 A 0.469112 1 2000-01-04 A -0.282863 2 2000-01-05 A -1.509059 3 2000-01-03 B -1.135632 4 2000-01-04 B 1.212112 5 2000-01-05 B -0.173215 6 2000-01-03 C 0.119209 7 2000-01-04 C -1.044236 8 2000-01-05 C -0.861849 9 2000-01-03 D -2.104569 10 2000-01-04 D -0.494929 11 2000-01-05 D 1.071804

For the curious here is how the above DataFrame was created:

import pandas.util.testing as tm; tm.N = 3 def unpivot(frame): N, K = frame.shape data = {'value' : frame.values.ravel('F'), 'variable' : np.asarray(frame.columns).repeat(N), 'date' : np.tile(np.asarray(frame.index), K)} return pd.DataFrame(data, columns=['date', 'variable', 'value']) df = unpivot(tm.makeTimeDataFrame())

To select out everything for variable A we could do:

In [2]: df[df['variable'] == 'A'] Out[2]: date variable value 0 2000-01-03 A 0.469112 1 2000-01-04 A -0.282863 2 2000-01-05 A -1.509059

But suppose we wish to do time series operations with the variables. A better representation would be where the columns are the unique variables and anindex of dates identifies individual observations. To reshape the data into this form, use the pivot function:

In [3]: df.pivot(index='date', columns='variable', values='value') Out[3]: variable A B C D date
2000-01-03 0.469112 -1.135632 0.119209 -2.104569 2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 2000-01-05 -1.509059 -0.173215 -0.861849 1.071804

If the values argument is omitted, and the input DataFrame has more than one column of values which are not used as column or index inputs to pivot, then the resulting “pivoted” DataFrame will have hierarchical columns whose topmost level indicates the respective value column:

In [4]: df['value2'] = df['value'] * 2

In [5]: pivoted = df.pivot('date', 'variable')

In [6]: pivoted Out[6]: value value2
variable A B C D A B
date
2000-01-03 0.469112 -1.135632 0.119209 -2.104569 0.938225 -2.271265
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 -0.565727 2.424224
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804 -3.018117 -0.346429

variable C D
date
2000-01-03 0.238417 -4.209138
2000-01-04 -2.088472 -0.989859
2000-01-05 -1.723698 2.143608

You of course can then select subsets from the pivoted DataFrame:

In [7]: pivoted['value2'] Out[7]: variable A B C D date
2000-01-03 0.938225 -2.271265 0.238417 -4.209138 2000-01-04 -0.565727 2.424224 -2.088472 -0.989859 2000-01-05 -3.018117 -0.346429 -1.723698 2.143608

Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.

Reshaping by stacking and unstacking

Closely related to the pivot function are the related stack andunstack functions currently available on Series and DataFrame. These functions are designed to work together with MultiIndex objects (see the section on hierarchical indexing). Here are essentially what these functions do:

The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:

In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', ...: 'foo', 'foo', 'qux', 'qux'], ...: ['one', 'two', 'one', 'two', ...: 'one', 'two', 'one', 'two']])) ...:

In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [11]: df2 = df[:4]

In [12]: df2 Out[12]: A B first second
bar one 0.721555 -0.706771 two -1.039575 0.271860 baz one -0.424972 0.567020 two 0.276232 -1.087401

The stack function “compresses” a level in the DataFrame’s columns to produce either:

If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex on the columns:

In [13]: stacked = df2.stack()

In [14]: stacked Out[14]: first second
bar one A 0.721555 B -0.706771 two A -1.039575 B 0.271860 baz one A -0.424972 B 0.567020 two A 0.276232 B -1.087401 dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as theindex), the inverse operation of stack is unstack, which by default unstacks the last level:

In [15]: stacked.unstack() Out[15]: A B first second
bar one 0.721555 -0.706771 two -1.039575 0.271860 baz one -0.424972 0.567020 two 0.276232 -1.087401

In [16]: stacked.unstack(1) Out[16]: second one two first
bar A 0.721555 -1.039575 B -0.706771 0.271860 baz A -0.424972 0.276232 B 0.567020 -1.087401

In [17]: stacked.unstack(0) Out[17]: first bar baz second
one A 0.721555 -0.424972 B -0.706771 0.567020 two A -1.039575 0.276232 B 0.271860 -1.087401

If the indexes have names, you can use the level names instead of specifying the level numbers:

In [18]: stacked.unstack('second') Out[18]: second one two first
bar A 0.721555 -1.039575 B -0.706771 0.271860 baz A -0.424972 0.276232 B 0.567020 -1.087401

Notice that the stack and unstack methods implicitly sort the index levels involved. Hence a call to stack and then unstack, or viceversa, will result in a sorted copy of the original DataFrame or Series:

In [19]: index = pd.MultiIndex.from_product([[2,1], ['a', 'b']])

In [20]: df = pd.DataFrame(np.random.randn(4), index=index, columns=['A'])

In [21]: df Out[21]: A 2 a -0.370647 b -1.157892 1 a -1.344312 b 0.844885

In [22]: all(df.unstack().stack() == df.sort_index()) Out[22]: True

while the above code will raise a TypeError if the call to sort_index is removed.

Multiple Levels

You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.

In [23]: columns = pd.MultiIndex.from_tuples([ ....: ('A', 'cat', 'long'), ('B', 'cat', 'long'), ....: ('A', 'dog', 'short'), ('B', 'dog', 'short') ....: ], ....: names=['exp', 'animal', 'hair_length'] ....: ) ....:

In [24]: df = pd.DataFrame(np.random.randn(4, 4), columns=columns)

In [25]: df Out[25]: exp A B A B animal cat cat dog dog hair_length long long short short 0 1.075770 -0.109050 1.643563 -1.469388 1 0.357021 -0.674600 -1.776904 -0.968914 2 -1.294524 0.413738 0.276662 -0.472035 3 -0.013960 -0.362543 -0.006154 -0.923061

In [26]: df.stack(level=['animal', 'hair_length']) Out[26]: exp A B animal hair_length
0 cat long 1.075770 -0.109050 dog short 1.643563 -1.469388 1 cat long 0.357021 -0.674600 dog short -1.776904 -0.968914 2 cat long -1.294524 0.413738 dog short 0.276662 -0.472035 3 cat long -0.013960 -0.362543 dog short -0.006154 -0.923061

The list of levels can contain either level names or level numbers (but not a mixture of the two).

df.stack(level=['animal', 'hair_length'])

from above is equivalent to:

In [27]: df.stack(level=[1, 2]) Out[27]: exp A B animal hair_length
0 cat long 1.075770 -0.109050 dog short 1.643563 -1.469388 1 cat long 0.357021 -0.674600 dog short -1.776904 -0.968914 2 cat long -1.294524 0.413738 dog short 0.276662 -0.472035 3 cat long -0.013960 -0.362543 dog short -0.006154 -0.923061

Missing Data

These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by calling sort_index, of course). Here is a more complex example:

In [28]: columns = pd.MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'), ....: ('B', 'cat'), ('A', 'dog')], ....: names=['exp', 'animal']) ....:

In [29]: index = pd.MultiIndex.from_product([('bar', 'baz', 'foo', 'qux'), ....: ('one', 'two')], ....: names=['first', 'second']) ....:

In [30]: df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns)

In [31]: df2 = df.ix[[0, 1, 2, 4, 5, 7]]

In [32]: df2 Out[32]: exp A B A animal cat dog cat dog first second
bar one 0.895717 0.805244 -1.206412 2.565646 two 1.431256 1.340309 -1.170299 -0.226169 baz one 0.410835 0.813850 0.132003 -0.827317 foo one -1.413681 1.607920 1.024180 0.569605 two 0.875906 -2.211372 0.974466 -2.006747 qux two -1.226825 0.769804 -1.281247 -0.727707

As mentioned above, stack can be called with a level argument to select which level in the columns to stack:

In [33]: df2.stack('exp') Out[33]: animal cat dog first second exp
bar one A 0.895717 2.565646 B -1.206412 0.805244 two A 1.431256 -0.226169 B -1.170299 1.340309 baz one A 0.410835 -0.827317 B 0.132003 0.813850 foo one A -1.413681 0.569605 B 1.024180 1.607920 two A 0.875906 -2.006747 B 0.974466 -2.211372 qux two A -1.226825 -0.727707 B -1.281247 0.769804

In [34]: df2.stack('animal') Out[34]: exp A B first second animal
bar one cat 0.895717 -1.206412 dog 2.565646 0.805244 two cat 1.431256 -1.170299 dog -0.226169 1.340309 baz one cat 0.410835 0.132003 dog -0.827317 0.813850 foo one cat -1.413681 1.024180 dog 0.569605 1.607920 two cat 0.875906 0.974466 dog -2.006747 -2.211372 qux two cat -1.226825 -1.281247 dog -0.727707 0.769804

Unstacking can result in missing values if subgroups do not have the same set of labels. By default, missing values will be replaced with the default fill value for that data type, NaN for float, NaT for datetimelike, etc. For integer types, by default data will converted to float and missing values will be set to NaN.

In [35]: df3 = df.iloc[[0, 1, 4, 7], [1, 2]]

In [36]: df3 Out[36]: exp B
animal dog cat first second
bar one 0.805244 -1.206412 two 1.340309 -1.170299 foo one 1.607920 1.024180 qux two 0.769804 -1.281247

In [37]: df3.unstack() Out[37]: exp B
animal dog cat
second one two one two first
bar 0.805244 1.340309 -1.206412 -1.170299 foo 1.607920 NaN 1.024180 NaN qux NaN 0.769804 NaN -1.281247

Alternatively, unstack takes an optional fill_value argument, for specifying the value of missing data.

In [38]: df3.unstack(fill_value=-1e9) Out[38]: exp B
animal dog cat
second one two one two first
bar 8.052440e-01 1.340309e+00 -1.206412e+00 -1.170299e+00 foo 1.607920e+00 -1.000000e+09 1.024180e+00 -1.000000e+09 qux -1.000000e+09 7.698036e-01 -1.000000e+09 -1.281247e+00

With a MultiIndex

Unstacking when the columns are a MultiIndex is also careful about doing the right thing:

In [39]: df[:3].unstack(0) Out[39]: exp A B A
animal cat dog cat dog
first bar baz bar baz bar baz bar
second
one 0.895717 0.410835 0.805244 0.81385 -1.206412 0.132003 2.565646
two 1.431256 NaN 1.340309 NaN -1.170299 NaN -0.226169

exp
animal
first baz
second
one -0.827317
two NaN

In [40]: df2.unstack(1) Out[40]: exp A B A
animal cat dog cat dog
second one two one two one two one
first
bar 0.895717 1.431256 0.805244 1.340309 -1.206412 -1.170299 2.565646
baz 0.410835 NaN 0.813850 NaN 0.132003 NaN -0.827317
foo -1.413681 0.875906 1.607920 -2.211372 1.024180 0.974466 0.569605
qux NaN -1.226825 NaN 0.769804 NaN -1.281247 NaN

exp
animal
second two
first
bar -0.226169
baz NaN
foo -2.006747
qux -0.727707

Reshaping by Melt

The melt() function is useful to massage a DataFrame into a format where one or more columns are identifier variables, while all other columns, considered measured variables, are “unpivoted” to the row axis, leaving just two non-identifier columns, “variable” and “value”. The names of those columns can be customized by supplying the var_name andvalue_name parameters.

For instance,

In [41]: cheese = pd.DataFrame({'first' : ['John', 'Mary'], ....: 'last' : ['Doe', 'Bo'], ....: 'height' : [5.5, 6.0], ....: 'weight' : [130, 150]}) ....:

In [42]: cheese Out[42]: first height last weight 0 John 5.5 Doe 130 1 Mary 6.0 Bo 150

In [43]: pd.melt(cheese, id_vars=['first', 'last']) Out[43]: first last variable value 0 John Doe height 5.5 1 Mary Bo height 6.0 2 John Doe weight 130.0 3 Mary Bo weight 150.0

In [44]: pd.melt(cheese, id_vars=['first', 'last'], var_name='quantity') Out[44]: first last quantity value 0 John Doe height 5.5 1 Mary Bo height 6.0 2 John Doe weight 130.0 3 Mary Bo weight 150.0

Another way to transform is to use the wide_to_long panel data convenience function.

In [45]: dft = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ....: "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ....: "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ....: "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ....: "X" : dict(zip(range(3), np.random.randn(3))) ....: }) ....:

In [46]: dft["id"] = dft.index

In [47]: dft Out[47]: A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -0.121306 0 1 b e 1.2 1.3 -0.097883 1 2 c f 0.7 0.1 0.695775 2

In [48]: pd.wide_to_long(dft, ["A", "B"], i="id", j="year") Out[48]: X A B id year
0 1970 -0.121306 a 2.5 1 1970 -0.097883 b 1.2 2 1970 0.695775 c 0.7 0 1980 -0.121306 d 3.2 1 1980 -0.097883 e 1.3 2 1980 0.695775 f 0.1

Combining with stats and GroupBy

It should be no shock that combining pivot / stack / unstack with GroupBy and the basic Series and DataFrame statistical functions can produce some very expressive and fast data manipulations.

In [49]: df Out[49]: exp A B A animal cat dog cat dog first second
bar one 0.895717 0.805244 -1.206412 2.565646 two 1.431256 1.340309 -1.170299 -0.226169 baz one 0.410835 0.813850 0.132003 -0.827317 two -0.076467 -1.187678 1.130127 -1.436737 foo one -1.413681 1.607920 1.024180 0.569605 two 0.875906 -2.211372 0.974466 -2.006747 qux one -0.410001 -0.078638 0.545952 -1.219217 two -1.226825 0.769804 -1.281247 -0.727707

In [50]: df.stack().mean(1).unstack() Out[50]: animal cat dog first second
bar one -0.155347 1.685445 two 0.130479 0.557070 baz one 0.271419 -0.006733 two 0.526830 -1.312207 foo one -0.194750 1.088763 two 0.925186 -2.109060 qux one 0.067976 -0.648927 two -1.254036 0.021048

same result, another way

In [51]: df.groupby(level=1, axis=1).mean() Out[51]: animal cat dog first second
bar one -0.155347 1.685445 two 0.130479 0.557070 baz one 0.271419 -0.006733 two 0.526830 -1.312207 foo one -0.194750 1.088763 two 0.925186 -2.109060 qux one 0.067976 -0.648927 two -1.254036 0.021048

In [52]: df.stack().groupby(level=1).mean() Out[52]: exp A B second
one 0.071448 0.455513 two -0.424186 -0.204486

In [53]: df.mean().unstack(0) Out[53]: exp A B animal
cat 0.060843 0.018596 dog -0.413580 0.232430

Pivot tables

The function pandas.pivot_table can be used to create spreadsheet-style pivot tables. See the cookbook for some advanced strategies

It takes a number of arguments

Consider a data set like this:

In [54]: import datetime

In [55]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6, ....: 'B': ['A', 'B', 'C'] * 8, ....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4, ....: 'D': np.random.randn(24), ....: 'E': np.random.randn(24), ....: 'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)] + ....: [datetime.datetime(2013, i, 15) for i in range(1, 13)]}) ....:

In [56]: df Out[56]: A B C D E F 0 one A foo 0.341734 -0.317441 2013-01-01 1 one B foo 0.959726 -1.236269 2013-02-01 2 two C foo -1.110336 0.896171 2013-03-01 3 three A bar -0.619976 -0.487602 2013-04-01 4 one B bar 0.149748 -0.082240 2013-05-01 5 one C bar -0.732339 -2.182937 2013-06-01 6 two A foo 0.687738 0.380396 2013-07-01 .. ... .. ... ... ... ... 17 one C bar -0.345352 0.206053 2013-06-15 18 two A foo 1.314232 -0.251905 2013-07-15 19 three B foo 0.690579 -2.213588 2013-08-15 20 one C foo 0.995761 1.063327 2013-09-15 21 one A bar 2.396780 1.266143 2013-10-15 22 two B bar 0.014871 0.299368 2013-11-15 23 three C bar 3.357427 -0.863838 2013-12-15

[24 rows x 6 columns]

We can produce pivot tables from this data very easily:

In [57]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C']) Out[57]: C bar foo A B
one A 1.120915 -0.514058 B -0.338421 0.002759 C -0.538846 0.699535 three A -1.181568 NaN B NaN 0.433512 C 0.588783 NaN two A NaN 1.000985 B 0.158248 NaN C NaN 0.176180

In [58]: pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum) Out[58]: A one three two
C bar foo bar foo bar foo B
A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971 B -0.676843 0.005518 NaN 0.867024 0.316495 NaN C -1.077692 1.399070 1.177566 NaN NaN 0.352360

In [59]: pd.pivot_table(df, values=['D','E'], index=['B'], columns=['A', 'C'], aggfunc=np.sum) Out[59]: D E
A one three two one
C bar foo bar foo bar foo bar
B
A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971 2.786113
B -0.676843 0.005518 NaN 0.867024 0.316495 NaN 1.368280
C -1.077692 1.399070 1.177566 NaN NaN 0.352360 -1.976883

A three two
C foo bar foo bar foo
B
A -0.043211 1.922577 NaN NaN 0.128491
B -1.103384 NaN -2.128743 -0.194294 NaN
C 1.495717 -0.263660 NaN NaN 0.872482

The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the values column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of hierarchy in the columns:

In [60]: pd.pivot_table(df, index=['A', 'B'], columns=['C']) Out[60]: D E
C bar foo bar foo A B
one A 1.120915 -0.514058 1.393057 -0.021605 B -0.338421 0.002759 0.684140 -0.551692 C -0.538846 0.699535 -0.988442 0.747859 three A -1.181568 NaN 0.961289 NaN B NaN 0.433512 NaN -1.064372 C 0.588783 NaN -0.131830 NaN two A NaN 1.000985 NaN 0.064245 B 0.158248 NaN -0.097147 NaN C NaN 0.176180 NaN 0.436241

Also, you can use Grouper for index and columns keywords. For detail of Grouper, see Grouping with a Grouper specification.

In [61]: pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'), columns='C') Out[61]: C bar foo F
2013-01-31 NaN -0.514058 2013-02-28 NaN 0.002759 2013-03-31 NaN 0.176180 2013-04-30 -1.181568 NaN 2013-05-31 -0.338421 NaN 2013-06-30 -0.538846 NaN 2013-07-31 NaN 1.000985 2013-08-31 NaN 0.433512 2013-09-30 NaN 0.699535 2013-10-31 1.120915 NaN 2013-11-30 0.158248 NaN 2013-12-31 0.588783 NaN

You can render a nice output of the table omitting the missing values by calling to_string if you wish:

In [62]: table = pd.pivot_table(df, index=['A', 'B'], columns=['C'])

In [63]: print(table.to_string(na_rep='')) D E
C bar foo bar foo A B
one A 1.120915 -0.514058 1.393057 -0.021605 B -0.338421 0.002759 0.684140 -0.551692 C -0.538846 0.699535 -0.988442 0.747859 three A -1.181568 0.961289
B 0.433512 -1.064372 C 0.588783 -0.131830
two A 1.000985 0.064245 B 0.158248 -0.097147
C 0.176180 0.436241

Note that pivot_table is also available as an instance method on DataFrame.

Adding margins

If you pass margins=True to pivot_table, special All columns and rows will be added with partial group aggregates across the categories on the rows and columns:

In [64]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std) Out[64]: D E
C bar foo All bar foo All A B
one A 1.804346 1.210272 1.569879 0.179483 0.418374 0.858005 B 0.690376 1.353355 0.898998 1.083825 0.968138 1.101401 C 0.273641 0.418926 0.771139 1.689271 0.446140 1.422136 three A 0.794212 NaN 0.794212 2.049040 NaN 2.049040 B NaN 0.363548 0.363548 NaN 1.625237 1.625237 C 3.915454 NaN 3.915454 1.035215 NaN 1.035215 two A NaN 0.442998 0.442998 NaN 0.447104 0.447104 B 0.202765 NaN 0.202765 0.560757 NaN 0.560757 C NaN 1.819408 1.819408 NaN 0.650439 0.650439 All 1.556686 0.952552 1.246608 1.250924 0.899904 1.059389

Cross tabulations

Use the crosstab function to compute a cross-tabulation of two (or more) factors. By default crosstab computes a frequency table of the factors unless an array of values and an aggregation function are passed.

It takes a number of arguments

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified

For example:

In [65]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'

In [66]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)

In [67]: b = np.array([one, one, two, one, two, one], dtype=object)

In [68]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)

In [69]: pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c']) Out[69]: b one two
c dull shiny dull shiny a
bar 1 0 0 1 foo 2 1 1 0

If crosstab receives only two Series, it will provide a frequency table.

In [70]: df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4], ....: 'C': [1, 1, np.nan, 1, 1]}) ....:

In [71]: df Out[71]: A B C 0 1 3 1.0 1 2 3 1.0 2 2 4 NaN 3 2 4 1.0 4 2 4 1.0

In [72]: pd.crosstab(df.A, df.B) Out[72]: B 3 4 A
1 1 0 2 1 3

Normalization

New in version 0.18.1.

Frequency tables can also be normalized to show percentages rather than counts using the normalize argument:

In [73]: pd.crosstab(df.A, df.B, normalize=True) Out[73]: B 3 4 A
1 0.2 0.0 2 0.2 0.6

normalize can also normalize values within each row or within each column:

In [74]: pd.crosstab(df.A, df.B, normalize='columns') Out[74]: B 3 4 A
1 0.5 0.0 2 0.5 1.0

crosstab can also be passed a third Series and an aggregation function (aggfunc) that will be applied to the values of the third Series within each group defined by the first two Series:

In [75]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum) Out[75]: B 3 4 A
1 1.0 NaN 2 1.0 2.0

Adding Margins

Finally, one can also add margins or normalize this output.

In [76]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum, normalize=True, ....: margins=True) ....: Out[76]: B 3 4 All A
1 0.25 0.0 0.25 2 0.25 0.5 0.75 All 0.50 0.5 1.00

Tiling

The cut function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:

In [77]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])

In [78]: pd.cut(ages, bins=3) Out[78]: [(9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (26.667, 43.333], (43.333, 60], (43.333, 60]] Categories (3, object): [(9.95, 26.667] < (26.667, 43.333] < (43.333, 60]]

If the bins keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:

In [79]: pd.cut(ages, bins=[0, 18, 35, 70]) Out[79]: [(0, 18], (0, 18], (0, 18], (0, 18], (18, 35], (18, 35], (18, 35], (35, 70], (35, 70]] Categories (3, object): [(0, 18] < (18, 35] < (35, 70]]

Computing indicator / dummy variables

To convert a categorical variable into a “dummy” or “indicator” DataFrame, for example a column in a DataFrame (a Series) which has k distinct values, can derive a DataFrame containing k columns of 1s and 0s:

In [80]: df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)})

In [81]: pd.get_dummies(df['key']) Out[81]: a b c 0 0.0 1.0 0.0 1 0.0 1.0 0.0 2 1.0 0.0 0.0 3 0.0 0.0 1.0 4 1.0 0.0 0.0 5 0.0 1.0 0.0

Sometimes it’s useful to prefix the column names, for example when merging the result with the original DataFrame:

In [82]: dummies = pd.get_dummies(df['key'], prefix='key')

In [83]: dummies Out[83]: key_a key_b key_c 0 0.0 1.0 0.0 1 0.0 1.0 0.0 2 1.0 0.0 0.0 3 0.0 0.0 1.0 4 1.0 0.0 0.0 5 0.0 1.0 0.0

In [84]: df[['data1']].join(dummies) Out[84]: data1 key_a key_b key_c 0 0 0.0 1.0 0.0 1 1 0.0 1.0 0.0 2 2 1.0 0.0 0.0 3 3 0.0 0.0 1.0 4 4 1.0 0.0 0.0 5 5 0.0 1.0 0.0

This function is often used along with discretization functions like cut:

In [85]: values = np.random.randn(10)

In [86]: values Out[86]: array([ 0.4082, -1.0481, -0.0257, -0.9884, 0.0941, 1.2627, 1.29 , 0.0824, -0.0558, 0.5366])

In [87]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

In [88]: pd.get_dummies(pd.cut(values, bins)) Out[88]: (0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1] 0 0.0 0.0 1.0 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 4 1.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 7 1.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 9 0.0 0.0 1.0 0.0 0.0

See also Series.str.get_dummies.

New in version 0.15.0.

get_dummies() also accepts a DataFrame. By default all categorical variables (categorical in the statistical sense, those with object or categorical dtype) are encoded as dummy variables.

In [89]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'], ....: 'C': [1, 2, 3]}) ....:

In [90]: pd.get_dummies(df) Out[90]: C A_a A_b B_b B_c 0 1 1.0 0.0 0.0 1.0 1 2 0.0 1.0 0.0 1.0 2 3 1.0 0.0 1.0 0.0

All non-object columns are included untouched in the output.

You can control the columns that are encoded with the columns keyword.

In [91]: pd.get_dummies(df, columns=['A']) Out[91]: B C A_a A_b 0 c 1 1.0 0.0 1 c 2 0.0 1.0 2 b 3 1.0 0.0

Notice that the B column is still included in the output, it just hasn’t been encoded. You can drop B before calling get_dummies if you don’t want to include it in the output.

As with the Series version, you can pass values for the prefix andprefix_sep. By default the column name is used as the prefix, and ‘_’ as the prefix separator. You can specify prefix and prefix_sep in 3 ways

In [92]: simple = pd.get_dummies(df, prefix='new_prefix')

In [93]: simple Out[93]: C new_prefix_a new_prefix_b new_prefix_b new_prefix_c 0 1 1.0 0.0 0.0 1.0 1 2 0.0 1.0 0.0 1.0 2 3 1.0 0.0 1.0 0.0

In [94]: from_list = pd.get_dummies(df, prefix=['from_A', 'from_B'])

In [95]: from_list Out[95]: C from_A_a from_A_b from_B_b from_B_c 0 1 1.0 0.0 0.0 1.0 1 2 0.0 1.0 0.0 1.0 2 3 1.0 0.0 1.0 0.0

In [96]: from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'})

In [97]: from_dict Out[97]: C from_A_a from_A_b from_B_b from_B_c 0 1 1.0 0.0 0.0 1.0 1 2 0.0 1.0 0.0 1.0 2 3 1.0 0.0 1.0 0.0

New in version 0.18.0.

Sometimes it will be useful to only keep k-1 levels of a categorical variable to avoid collinearity when feeding the result to statistical models. You can switch to this mode by turn on drop_first.

In [98]: s = pd.Series(list('abcaa'))

In [99]: pd.get_dummies(s) Out[99]: a b c 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 3 1.0 0.0 0.0 4 1.0 0.0 0.0

In [100]: pd.get_dummies(s, drop_first=True) Out[100]: b c 0 0.0 0.0 1 1.0 0.0 2 0.0 1.0 3 0.0 0.0 4 0.0 0.0

When a column contains only one level, it will be omitted in the result.

In [101]: df = pd.DataFrame({'A':list('aaaaa'),'B':list('ababc')})

In [102]: pd.get_dummies(df) Out[102]: A_a B_a B_b B_c 0 1.0 1.0 0.0 0.0 1 1.0 0.0 1.0 0.0 2 1.0 1.0 0.0 0.0 3 1.0 0.0 1.0 0.0 4 1.0 0.0 0.0 1.0

In [103]: pd.get_dummies(df, drop_first=True) Out[103]: B_b B_c 0 0.0 0.0 1 1.0 0.0 2 0.0 0.0 3 1.0 0.0 4 0.0 1.0

Factorizing values

To encode 1-d values as an enumerated type use factorize:

In [104]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])

In [105]: x Out[105]: 0 A 1 A 2 NaN 3 B 4 3.14 5 inf dtype: object

In [106]: labels, uniques = pd.factorize(x)

In [107]: labels Out[107]: array([ 0, 0, -1, 1, 2, 3])

In [108]: uniques Out[108]: Index([u'A', u'B', 3.14, inf], dtype='object')

Note that factorize is similar to numpy.unique, but differs in its handling of NaN:

Note

The following numpy.unique will fail under Python 3 with a TypeErrorbecause of an ordering bug. See alsoHere

In [109]: pd.factorize(x, sort=True) Out[109]: (array([ 2, 2, -1, 3, 0, 1]), Index([3.14, inf, u'A', u'B'], dtype='object'))

In [110]: np.unique(x, return_inverse=True)[::-1] Out[110]: (array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))

Note

If you just want to handle one column as a categorical variable (like R’s factor), you can use df["cat_col"] = pd.Categorical(df["col"]) ordf["cat_col"] = df["col"].astype("category"). For full docs on Categorical, see the Categorical introduction and theAPI documentation. This feature was introduced in version 0.15.