pandas.DataFrame.reindex_axis — pandas 0.24.2 documentation (original) (raw)

DataFrame. reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)[source]

Conform input object to new index.

Deprecated since version 0.21.0: Use reindex instead.

By default, places NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.

Parameters: labels : array-like New labels / index to conform to. Preferably an Index object to avoid duplicating data. axis : {0 or ‘index’, 1 or ‘columns’} Indicate whether to use rows or columns. method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: default: don’t fill gaps. pad / ffill: propagate last valid observation forward to next valid. backfill / bfill: use next valid observation to fill gap. nearest: use nearest valid observations to fill gap. level : int or str Broadcast across a level, matching Index values on the passed MultiIndex level. copy : bool, default True Return a new object, even if the passed indexes are the same. limit : int, optional Maximum number of consecutive elements to forward or backward fill. fill_value : float, default NaN Value used to fill in locations having no value in the previous index. New in version 0.21.0: (list-like tolerance)
Returns: DataFrame Returns a new DataFrame object with new indices, unless the new index is equivalent to the current one and copy=False.

Examples

df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) df num_legs num_wings dog 4 0 hawk 2 2 df.reindex(['num_wings', 'num_legs', 'num_heads'], ... axis='columns') num_wings num_legs num_heads dog 0 4 NaN hawk 2 2 NaN