Window — pandas 0.24.2 documentation (original) (raw)
Rolling objects are returned by .rolling
calls: pandas.DataFrame.rolling(), pandas.Series.rolling(), etc. Expanding objects are returned by .expanding
calls: pandas.DataFrame.expanding(), pandas.Series.expanding(), etc. EWM objects are returned by .ewm
calls: pandas.DataFrame.ewm(), pandas.Series.ewm(), etc.
Standard moving window functions¶
Rolling.count() | The rolling count of any non-NaN observations inside the window. |
---|---|
Rolling.sum(*args, **kwargs) | Calculate rolling sum of given DataFrame or Series. |
Rolling.mean(*args, **kwargs) | Calculate the rolling mean of the values. |
Rolling.median(**kwargs) | Calculate the rolling median. |
Rolling.var([ddof]) | Calculate unbiased rolling variance. |
Rolling.std([ddof]) | Calculate rolling standard deviation. |
Rolling.min(*args, **kwargs) | Calculate the rolling minimum. |
Rolling.max(*args, **kwargs) | Calculate the rolling maximum. |
Rolling.corr([other, pairwise]) | Calculate rolling correlation. |
Rolling.cov([other, pairwise, ddof]) | Calculate the rolling sample covariance. |
Rolling.skew(**kwargs) | Unbiased rolling skewness. |
Rolling.kurt(**kwargs) | Calculate unbiased rolling kurtosis. |
Rolling.apply(func[, raw, args, kwargs]) | The rolling function’s apply function. |
Rolling.aggregate(arg, *args, **kwargs) | Aggregate using one or more operations over the specified axis. |
Rolling.quantile(quantile[, interpolation]) | Calculate the rolling quantile. |
Window.mean(*args, **kwargs) | Calculate the window mean of the values. |
Window.sum(*args, **kwargs) | Calculate window sum of given DataFrame or Series. |
Standard expanding window functions¶
Expanding.count(**kwargs) | The expanding count of any non-NaN observations inside the window. |
---|---|
Expanding.sum(*args, **kwargs) | Calculate expanding sum of given DataFrame or Series. |
Expanding.mean(*args, **kwargs) | Calculate the expanding mean of the values. |
Expanding.median(**kwargs) | Calculate the expanding median. |
Expanding.var([ddof]) | Calculate unbiased expanding variance. |
Expanding.std([ddof]) | Calculate expanding standard deviation. |
Expanding.min(*args, **kwargs) | Calculate the expanding minimum. |
Expanding.max(*args, **kwargs) | Calculate the expanding maximum. |
Expanding.corr([other, pairwise]) | Calculate expanding correlation. |
Expanding.cov([other, pairwise, ddof]) | Calculate the expanding sample covariance. |
Expanding.skew(**kwargs) | Unbiased expanding skewness. |
Expanding.kurt(**kwargs) | Calculate unbiased expanding kurtosis. |
Expanding.apply(func[, raw, args, kwargs]) | The expanding function’s apply function. |
Expanding.aggregate(arg, *args, **kwargs) | Aggregate using one or more operations over the specified axis. |
Expanding.quantile(quantile[, interpolation]) | Calculate the expanding quantile. |
Exponentially-weighted moving window functions¶
EWM.mean(*args, **kwargs) | Exponential weighted moving average. |
---|---|
EWM.std([bias]) | Exponential weighted moving stddev. |
EWM.var([bias]) | Exponential weighted moving variance. |
EWM.corr([other, pairwise]) | Exponential weighted sample correlation. |
EWM.cov([other, pairwise, bias]) | Exponential weighted sample covariance. |