Working with Text Data — pandas 0.24.2 documentation (original) (raw)
Series and Index are equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the str
attribute and generally have names matching the equivalent (scalar) built-in string methods:
In [1]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [2]: s.str.lower() Out[2]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object
In [3]: s.str.upper() Out[3]: 0 A 1 B 2 C 3 AABA 4 BACA 5 NaN 6 CABA 7 DOG 8 CAT dtype: object
In [4]: s.str.len() Out[4]: 0 1.0 1 1.0 2 1.0 3 4.0 4 4.0 5 NaN 6 4.0 7 3.0 8 3.0 dtype: float64
In [5]: idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank'])
In [6]: idx.str.strip() Out[6]: Index(['jack', 'jill', 'jesse', 'frank'], dtype='object')
In [7]: idx.str.lstrip() Out[7]: Index(['jack', 'jill ', 'jesse ', 'frank'], dtype='object')
In [8]: idx.str.rstrip() Out[8]: Index([' jack', 'jill', ' jesse', 'frank'], dtype='object')
The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:
In [9]: df = pd.DataFrame(np.random.randn(3, 2), ...: columns=[' Column A ', ' Column B '], index=range(3)) ...:
In [10]: df Out[10]: Column A Column B 0 0.469112 -0.282863 1 -1.509059 -1.135632 2 1.212112 -0.173215
Since df.columns
is an Index object, we can use the .str
accessor
In [11]: df.columns.str.strip() Out[11]: Index(['Column A', 'Column B'], dtype='object')
In [12]: df.columns.str.lower() Out[12]: Index([' column a ', ' column b '], dtype='object')
These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing white spaces, lower casing all names, and replacing any remaining white spaces with underscores:
In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
In [14]: df Out[14]: column_a column_b 0 0.469112 -0.282863 1 -1.509059 -1.135632 2 1.212112 -0.173215
Note
If you have a Series
where lots of elements are repeated (i.e. the number of unique elements in the Series
is a lot smaller than the length of theSeries
), it can be faster to convert the original Series
to one of typecategory
and then use .str.<method>
or .dt.<property>
on that. The performance difference comes from the fact that, for Series
of type category
, the string operations are done on the .categories
and not on each element of theSeries
.
Please note that a Series
of type category
with string .categories
has some limitations in comparison of Series
of type string (e.g. you can’t add strings to each other: s + " " + s
won’t work if s
is a Series
of type category
). Also,.str
methods which operate on elements of type list
are not available on such aSeries
.
Splitting and Replacing Strings¶
Methods like split
return a Series of lists:
In [15]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
In [16]: s2.str.split('_') Out[16]: 0 [a, b, c] 1 [c, d, e] 2 NaN 3 [f, g, h] dtype: object
Elements in the split lists can be accessed using get
or []
notation:
In [17]: s2.str.split('_').str.get(1) Out[17]: 0 b 1 d 2 NaN 3 g dtype: object
In [18]: s2.str.split('_').str[1] Out[18]: 0 b 1 d 2 NaN 3 g dtype: object
It is easy to expand this to return a DataFrame using expand
.
In [19]: s2.str.split('_', expand=True) Out[19]: 0 1 2 0 a b c 1 c d e 2 NaN NaN NaN 3 f g h
It is also possible to limit the number of splits:
In [20]: s2.str.split('_', expand=True, n=1) Out[20]: 0 1 0 a b_c 1 c d_e 2 NaN NaN 3 f g_h
rsplit
is similar to split
except it works in the reverse direction, i.e., from the end of the string to the beginning of the string:
In [21]: s2.str.rsplit('_', expand=True, n=1) Out[21]: 0 1 0 a_b c 1 c_d e 2 NaN NaN 3 f_g h
replace
by default replaces regular expressions:
In [22]: s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', ....: '', np.nan, 'CABA', 'dog', 'cat']) ....:
In [23]: s3
Out[23]:
0 A
1 B
2 C
3 Aaba
4 Baca
5
6 NaN
7 CABA
8 dog
9 cat
dtype: object
In [24]: s3.str.replace('^.a|dog', 'XX-XX ', case=False)
Out[24]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6 NaN
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: object
Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble because of the regular expression meaning of$:
Consider the following badly formatted financial data
In [25]: dollars = pd.Series(['12', '-$10', '$10,000'])
This does what you'd naively expect:
In [26]: dollars.str.replace('$', '') Out[26]: 0 12 1 -10 2 10,000 dtype: object
But this doesn't:
In [27]: dollars.str.replace('-$', '-') Out[27]: 0 12 1 -$10 2 $10,000 dtype: object
We need to escape the special character (for >1 len patterns)
In [28]: dollars.str.replace(r'-$', '-') Out[28]: 0 12 1 -10 2 $10,000 dtype: object
New in version 0.23.0.
If you do want literal replacement of a string (equivalent tostr.replace()), you can set the optional regex
parameter toFalse
, rather than escaping each character. In this case both pat
and repl
must be strings:
These lines are equivalent
In [29]: dollars.str.replace(r'-$', '-') Out[29]: 0 12 1 -10 2 $10,000 dtype: object
In [30]: dollars.str.replace('-$', '-', regex=False) Out[30]: 0 12 1 -10 2 $10,000 dtype: object
New in version 0.20.0.
The replace
method can also take a callable as replacement. It is called on every pat
using re.sub(). The callable should expect one positional argument (a regex object) and return a string.
Reverse every lowercase alphabetic word
In [31]: pat = r'[a-z]+'
In [32]: def repl(m): ....: return m.group(0)[::-1] ....:
In [33]: pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(pat, repl) Out[33]: 0 oof 123 1 rab zab 2 NaN dtype: object
Using regex groups
In [34]: pat = r"(?P\w+) (?P\w+) (?P\w+)"
In [35]: def repl(m): ....: return m.group('two').swapcase() ....:
In [36]: pd.Series(['Foo Bar Baz', np.nan]).str.replace(pat, repl) Out[36]: 0 bAR 1 NaN dtype: object
New in version 0.20.0.
The replace
method also accepts a compiled regular expression object from re.compile() as a pattern. All flags should be included in the compiled regular expression object.
In [37]: import re
In [38]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE)
In [39]: s3.str.replace(regex_pat, 'XX-XX ')
Out[39]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6 NaN
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: object
Including a flags
argument when calling replace
with a compiled regular expression object will raise a ValueError
.
In [40]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)
ValueError: case and flags cannot be set when pat is a compiled regex
Concatenation¶
There are several ways to concatenate a Series
or Index
, either with itself or others, all based on cat(), resp. Index.str.cat
.
Concatenating a single Series into a string¶
The content of a Series
(or Index
) can be concatenated:
In [41]: s = pd.Series(['a', 'b', 'c', 'd'])
In [42]: s.str.cat(sep=',') Out[42]: 'a,b,c,d'
If not specified, the keyword sep
for the separator defaults to the empty string, sep=''
:
In [43]: s.str.cat() Out[43]: 'abcd'
By default, missing values are ignored. Using na_rep
, they can be given a representation:
In [44]: t = pd.Series(['a', 'b', np.nan, 'd'])
In [45]: t.str.cat(sep=',') Out[45]: 'a,b,d'
In [46]: t.str.cat(sep=',', na_rep='-') Out[46]: 'a,b,-,d'
Concatenating a Series and something list-like into a Series¶
The first argument to cat() can be a list-like object, provided that it matches the length of the calling Series
(or Index
).
In [47]: s.str.cat(['A', 'B', 'C', 'D']) Out[47]: 0 aA 1 bB 2 cC 3 dD dtype: object
Missing values on either side will result in missing values in the result as well, unless na_rep
is specified:
In [48]: s.str.cat(t) Out[48]: 0 aa 1 bb 2 NaN 3 dd dtype: object
In [49]: s.str.cat(t, na_rep='-') Out[49]: 0 aa 1 bb 2 c- 3 dd dtype: object
Concatenating a Series and something array-like into a Series¶
New in version 0.23.0.
The parameter others
can also be two-dimensional. In this case, the number or rows must match the lengths of the calling Series
(or Index
).
In [50]: d = pd.concat([t, s], axis=1)
In [51]: s Out[51]: 0 a 1 b 2 c 3 d dtype: object
In [52]: d Out[52]: 0 1 0 a a 1 b b 2 NaN c 3 d d
In [53]: s.str.cat(d, na_rep='-') Out[53]: 0 aaa 1 bbb 2 c-c 3 ddd dtype: object
Concatenating a Series and an indexed object into a Series, with alignment¶
New in version 0.23.0.
For concatenation with a Series
or DataFrame
, it is possible to align the indexes before concatenation by setting the join
-keyword.
In [54]: u = pd.Series(['b', 'd', 'a', 'c'], index=[1, 3, 0, 2])
In [55]: s Out[55]: 0 a 1 b 2 c 3 d dtype: object
In [56]: u Out[56]: 1 b 3 d 0 a 2 c dtype: object
In [57]: s.str.cat(u) Out[57]: 0 ab 1 bd 2 ca 3 dc dtype: object
In [58]: s.str.cat(u, join='left') Out[58]: 0 aa 1 bb 2 cc 3 dd dtype: object
Warning
If the join
keyword is not passed, the method cat() will currently fall back to the behavior before version 0.23.0 (i.e. no alignment), but a FutureWarning
will be raised if any of the involved indexes differ, since this default will change to join='left'
in a future version.
The usual options are available for join
(one of 'left', 'outer', 'inner', 'right'
). In particular, alignment also means that the different lengths do not need to coincide anymore.
In [59]: v = pd.Series(['z', 'a', 'b', 'd', 'e'], index=[-1, 0, 1, 3, 4])
In [60]: s Out[60]: 0 a 1 b 2 c 3 d dtype: object
In [61]: v Out[61]: -1 z 0 a 1 b 3 d 4 e dtype: object
In [62]: s.str.cat(v, join='left', na_rep='-') Out[62]: 0 aa 1 bb 2 c- 3 dd dtype: object
In [63]: s.str.cat(v, join='outer', na_rep='-') Out[63]: -1 -z 0 aa 1 bb 2 c- 3 dd 4 -e dtype: object
The same alignment can be used when others
is a DataFrame
:
In [64]: f = d.loc[[3, 2, 1, 0], :]
In [65]: s Out[65]: 0 a 1 b 2 c 3 d dtype: object
In [66]: f Out[66]: 0 1 3 d d 2 NaN c 1 b b 0 a a
In [67]: s.str.cat(f, join='left', na_rep='-') Out[67]: 0 aaa 1 bbb 2 c-c 3 ddd dtype: object
Concatenating a Series and many objects into a Series¶
Several array-like items (specifically: Series
, Index
, and 1-dimensional variants of np.ndarray
) can be combined in a list-like container (including iterators, dict
-views, etc.).
In [68]: s Out[68]: 0 a 1 b 2 c 3 d dtype: object
In [69]: u Out[69]: 1 b 3 d 0 a 2 c dtype: object
In [70]: s.str.cat([u, u.to_numpy()], join='left') Out[70]: 0 aab 1 bbd 2 cca 3 ddc dtype: object
All elements without an index (e.g. np.ndarray
) within the passed list-like must match in length to the calling Series
(or Index
), but Series
and Index
may have arbitrary length (as long as alignment is not disabled with join=None
):
In [71]: v Out[71]: -1 z 0 a 1 b 3 d 4 e dtype: object
In [72]: s.str.cat([v, u, u.to_numpy()], join='outer', na_rep='-') Out[72]: -1 -z-- 0 aaab 1 bbbd 2 c-ca 3 dddc 4 -e-- dtype: object
If using join='right'
on a list-like of others
that contains different indexes, the union of these indexes will be used as the basis for the final concatenation:
In [73]: u.loc[[3]] Out[73]: 3 d dtype: object
In [74]: v.loc[[-1, 0]] Out[74]: -1 z 0 a dtype: object
In [75]: s.str.cat([u.loc[[3]], v.loc[[-1, 0]]], join='right', na_rep='-') Out[75]: -1 --z 0 a-a 3 dd- dtype: object
Indexing with .str
¶
You can use []
notation to directly index by position locations. If you index past the end of the string, the result will be a NaN
.
In [76]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, ....: 'CABA', 'dog', 'cat']) ....:
In [77]: s.str[0] Out[77]: 0 A 1 B 2 C 3 A 4 B 5 NaN 6 C 7 d 8 c dtype: object
In [78]: s.str[1] Out[78]: 0 NaN 1 NaN 2 NaN 3 a 4 a 5 NaN 6 A 7 o 8 a dtype: object
Testing for Strings that Match or Contain a Pattern¶
You can check whether elements contain a pattern:
In [103]: pattern = r'[0-9][a-z]'
In [104]: pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern) Out[104]: 0 False 1 False 2 True 3 True 4 True dtype: bool
Or whether elements match a pattern:
In [105]: pd.Series(['1', '2', '3a', '3b', '03c']).str.match(pattern) Out[105]: 0 False 1 False 2 True 3 True 4 False dtype: bool
The distinction between match
and contains
is strictness: match
relies on strict re.match
, while contains
relies on re.search
.
Methods like match
, contains
, startswith
, and endswith
take an extra na
argument so missing values can be considered True or False:
In [106]: s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [107]: s4.str.contains('A', na=False) Out[107]: 0 True 1 False 2 False 3 True 4 False 5 False 6 True 7 False 8 False dtype: bool
Creating Indicator Variables¶
You can extract dummy variables from string columns. For example if they are separated by a '|'
:
In [108]: s = pd.Series(['a', 'a|b', np.nan, 'a|c'])
In [109]: s.str.get_dummies(sep='|') Out[109]: a b c 0 1 0 0 1 1 1 0 2 0 0 0 3 1 0 1
String Index
also supports get_dummies
which returns a MultiIndex
.
New in version 0.18.1.
In [110]: idx = pd.Index(['a', 'a|b', np.nan, 'a|c'])
In [111]: idx.str.get_dummies(sep='|') Out[111]: MultiIndex(levels=[[0, 1], [0, 1], [0, 1]], codes=[[1, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1]], names=['a', 'b', 'c'])
See also get_dummies().
Method Summary¶
Method | Description |
---|---|
cat() | Concatenate strings |
split() | Split strings on delimiter |
rsplit() | Split strings on delimiter working from the end of the string |
get() | Index into each element (retrieve i-th element) |
join() | Join strings in each element of the Series with passed separator |
get_dummies() | Split strings on the delimiter returning DataFrame of dummy variables |
contains() | Return boolean array if each string contains pattern/regex |
replace() | Replace occurrences of pattern/regex/string with some other string or the return value of a callable given the occurrence |
repeat() | Duplicate values (s.str.repeat(3) equivalent to x * 3) |
pad() | Add whitespace to left, right, or both sides of strings |
center() | Equivalent to str.center |
ljust() | Equivalent to str.ljust |
rjust() | Equivalent to str.rjust |
zfill() | Equivalent to str.zfill |
wrap() | Split long strings into lines with length less than a given width |
slice() | Slice each string in the Series |
slice_replace() | Replace slice in each string with passed value |
count() | Count occurrences of pattern |
startswith() | Equivalent to str.startswith(pat) for each element |
endswith() | Equivalent to str.endswith(pat) for each element |
findall() | Compute list of all occurrences of pattern/regex for each string |
match() | Call re.match on each element, returning matched groups as list |
extract() | Call re.search on each element, returning DataFrame with one row for each element and one column for each regex capture group |
extractall() | Call re.findall on each element, returning DataFrame with one row for each match and one column for each regex capture group |
len() | Compute string lengths |
strip() | Equivalent to str.strip |
rstrip() | Equivalent to str.rstrip |
lstrip() | Equivalent to str.lstrip |
partition() | Equivalent to str.partition |
rpartition() | Equivalent to str.rpartition |
lower() | Equivalent to str.lower |
upper() | Equivalent to str.upper |
find() | Equivalent to str.find |
rfind() | Equivalent to str.rfind |
index() | Equivalent to str.index |
rindex() | Equivalent to str.rindex |
capitalize() | Equivalent to str.capitalize |
swapcase() | Equivalent to str.swapcase |
normalize() | Return Unicode normal form. Equivalent to unicodedata.normalize |
translate() | Equivalent to str.translate |
isalnum() | Equivalent to str.isalnum |
isalpha() | Equivalent to str.isalpha |
isdigit() | Equivalent to str.isdigit |
isspace() | Equivalent to str.isspace |
islower() | Equivalent to str.islower |
isupper() | Equivalent to str.isupper |
istitle() | Equivalent to str.istitle |
isnumeric() | Equivalent to str.isnumeric |
isdecimal() | Equivalent to str.isdecimal |