pandas.Series.aggregate — pandas 0.25.3 documentation (original) (raw)
Series.
aggregate
(self, func, axis=0, *args, **kwargs)[source]¶
Aggregate using one or more operations over the specified axis.
New in version 0.20.0.
Parameters: | func : function, str, list or dict Function to use for aggregating the data. If a function, must either work when passed a Series or when passed to Series.apply. Accepted combinations are: function string function name list of functions and/or function names, e.g. [np.sum, 'mean'] dict of axis labels -> functions, function names or list of such. axis : {0 or ‘index’} Parameter needed for compatibility with DataFrame. *args Positional arguments to pass to func. **kwargs Keyword arguments to pass to func. |
---|---|
Returns: | scalar, Series or DataFrame The return can be: scalar : when Series.agg is called with single function Series : when DataFrame.agg is called with a single function DataFrame : when DataFrame.agg is called with several functions Return scalar, Series or DataFrame. |
Notes
agg is an alias for aggregate. Use the alias.
A passed user-defined-function will be passed a Series for evaluation.
Examples
s = pd.Series([1, 2, 3, 4]) s 0 1 1 2 2 3 3 4 dtype: int64
s.agg(['min', 'max']) min 1 max 4 dtype: int64