pandas.read_excel — pandas 0.25.3 documentation (original) (raw)

Parameters:

io : str, ExcelFile, xlrd.Book, path object or file-like object

Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.xlsx.

If you want to pass in a path object, pandas accepts any os.PathLike.

By file-like object, we refer to objects with a read() method, such as a file handler (e.g. via builtin open function) or StringIO.

sheet_name : str, int, list, or None, default 0

Strings are used for sheet names. Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets.

Available cases:

header : int, list of int, default 0

Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a MultiIndex. Use None if there is no header.

names : array-like, default None

List of column names to use. If file contains no header row, then you should explicitly pass header=None.

index_col : int, list of int, default None

Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a MultiIndex. If a subset of data is selected with usecols, index_col is based on the subset.

usecols : int, str, list-like, or callable default None

Return a subset of the columns.

squeeze : bool, default False

If the parsed data only contains one column then return a Series.

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use object to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.

New in version 0.20.0.

engine : str, default None

If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd.

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content.

true_values : list, default None

Values to consider as True.

New in version 0.19.0.

false_values : list, default None

Values to consider as False.

New in version 0.19.0.

skiprows : list-like

Rows to skip at the beginning (0-indexed).

nrows : int, default None

Number of rows to parse.

New in version 0.23.0.

na_values : scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’.

keep_default_na : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to.

verbose : bool, default False

Indicate number of NA values placed in non-numeric columns.

parse_dates : bool, list-like, or dict, default False

The behavior is as follows:

If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use pd.to_datetime after pd.read_excel.

Note: A fast-path exists for iso8601-formatted dates.

date_parser : function, optional

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.

thousands : str, default None

Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format.

comment : str, default None

Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored.

skip_footer : int, default 0

Alias of skipfooter.

Deprecated since version 0.23.0: Use skipfooter instead.

skipfooter : int, default 0

Rows at the end to skip (0-indexed).

convert_float : bool, default True

Convert integral floats to int (i.e., 1.0 –> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally.

mangle_dupe_cols : bool, default True

Duplicate columns will be specified as ‘X’, ‘X.1’, …’X.N’, rather than ‘X’…’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

**kwds : optional

Optional keyword arguments can be passed to TextFileReader.