DataFrame — pandas 0.25.3 documentation (original) (raw)
DataFrame.abs(self)
Return a Series/DataFrame with absolute numeric value of each element.
DataFrame.all(self[, axis, bool_only, …])
Return whether all elements are True, potentially over an axis.
DataFrame.any(self[, axis, bool_only, …])
Return whether any element is True, potentially over an axis.
DataFrame.clip(self[, lower, upper, axis, …])
Trim values at input threshold(s).
DataFrame.clip_lower(self, threshold[, …])
(DEPRECATED) Trim values below a given threshold.
DataFrame.clip_upper(self, threshold[, …])
(DEPRECATED) Trim values above a given threshold.
DataFrame.compound(self[, axis, skipna, level])
(DEPRECATED) Return the compound percentage of the values for the requested axis.
DataFrame.corr(self[, method, min_periods])
Compute pairwise correlation of columns, excluding NA/null values.
DataFrame.corrwith(self, other[, axis, …])
Compute pairwise correlation between rows or columns of DataFrame with rows or columns of Series or DataFrame.
DataFrame.count(self[, axis, level, …])
Count non-NA cells for each column or row.
DataFrame.cov(self[, min_periods])
Compute pairwise covariance of columns, excluding NA/null values.
DataFrame.cummax(self[, axis, skipna])
Return cumulative maximum over a DataFrame or Series axis.
DataFrame.cummin(self[, axis, skipna])
Return cumulative minimum over a DataFrame or Series axis.
DataFrame.cumprod(self[, axis, skipna])
Return cumulative product over a DataFrame or Series axis.
DataFrame.cumsum(self[, axis, skipna])
Return cumulative sum over a DataFrame or Series axis.
DataFrame.describe(self[, percentiles, …])
Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN
values.
DataFrame.diff(self[, periods, axis])
First discrete difference of element.
DataFrame.eval(self, expr[, inplace])
Evaluate a string describing operations on DataFrame columns.
DataFrame.kurt(self[, axis, skipna, level, …])
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).
DataFrame.kurtosis(self[, axis, skipna, …])
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).
DataFrame.mad(self[, axis, skipna, level])
Return the mean absolute deviation of the values for the requested axis.
DataFrame.max(self[, axis, skipna, level, …])
Return the maximum of the values for the requested axis.
DataFrame.mean(self[, axis, skipna, level, …])
Return the mean of the values for the requested axis.
DataFrame.median(self[, axis, skipna, …])
Return the median of the values for the requested axis.
DataFrame.min(self[, axis, skipna, level, …])
Return the minimum of the values for the requested axis.
DataFrame.mode(self[, axis, numeric_only, …])
Get the mode(s) of each element along the selected axis.
DataFrame.pct_change(self[, periods, …])
Percentage change between the current and a prior element.
DataFrame.prod(self[, axis, skipna, level, …])
Return the product of the values for the requested axis.
DataFrame.product(self[, axis, skipna, …])
Return the product of the values for the requested axis.
DataFrame.quantile(self[, q, axis, …])
Return values at the given quantile over requested axis.
DataFrame.rank(self[, axis, method, …])
Compute numerical data ranks (1 through n) along axis.
DataFrame.round(self[, decimals])
Round a DataFrame to a variable number of decimal places.
DataFrame.sem(self[, axis, skipna, level, …])
Return unbiased standard error of the mean over requested axis.
DataFrame.skew(self[, axis, skipna, level, …])
Return unbiased skew over requested axis Normalized by N-1.
DataFrame.sum(self[, axis, skipna, level, …])
Return the sum of the values for the requested axis.
DataFrame.std(self[, axis, skipna, level, …])
Return sample standard deviation over requested axis.
DataFrame.var(self[, axis, skipna, level, …])
Return unbiased variance over requested axis.
DataFrame.nunique(self[, axis, dropna])
Count distinct observations over requested axis.