pandas.Index.isna — pandas 1.0.1 documentation (original) (raw)
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None
, numpy.NaN
or pd.NaT
, get mapped to True
values. Everything else get mapped to False
values. Characters such as empty strings ‘’ or numpy.inf
are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True
).
Returns
numpy.ndarray
A boolean array of whether my values are NA.
Examples
Show which entries in a pandas.Index are NA. The result is an array.
idx = pd.Index([5.2, 6.0, np.NaN]) idx Float64Index([5.2, 6.0, nan], dtype='float64') idx.isna() array([False, False, True], dtype=bool)
Empty strings are not considered NA values. None is considered an NA value.
idx = pd.Index(['black', '', 'red', None]) idx Index(['black', '', 'red', None], dtype='object') idx.isna() array([False, False, False, True], dtype=bool)
For datetimes, NaT (Not a Time) is considered as an NA value.
idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) idx.isna() array([False, True, True, True], dtype=bool)