Cylinder model segmentation — Point Cloud Library 0.0 documentation (original) (raw)
This tutorial exemplifies how to run a Sample Consensus segmentation for cylindrical models. To make the example a bit more practical, the following operations are applied to the input dataset (in order):
- data points further away than 1.5 meters are filtered
- surface normals at each point are estimated
- a plane model (describing the table in our demo dataset) is segmented and saved to disk
- a cylindrical model (describing the mug in our demo dataset) is segmented and saved to disk
Note
The cylindrical model is not perfect due to the presence of noise in the data.
The code
First, download the dataset table_scene_mug_stereo_textured.pcdand save it somewhere to disk.
Then, create a file, let’s say, cylinder_segmentation.cpp
in your favorite editor, and place the following inside it:
1#include <pcl/ModelCoefficients.h> 2#include <pcl/io/pcd_io.h> 3#include <pcl/point_types.h> 4#include <pcl/filters/extract_indices.h> 5#include <pcl/filters/passthrough.h> 6#include <pcl/features/normal_3d.h> 7#include <pcl/sample_consensus/method_types.h> 8#include <pcl/sample_consensus/model_types.h> 9#include <pcl/segmentation/sac_segmentation.h> 10 11typedef pcl::PointXYZ PointT; 12 13int 14main () 15{ 16 // All the objects needed 17 pcl::PCDReader reader; 18 pcl::PassThrough pass; 19 pcl::NormalEstimation<PointT, pcl::Normal> ne; 20 pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg; 21 pcl::PCDWriter writer; 22 pcl::ExtractIndices extract; 23 pcl::ExtractIndicespcl::Normal extract_normals; 24 pcl::search::KdTree::Ptr tree (new pcl::search::KdTree ()); 25 26 // Datasets 27 pcl::PointCloud::Ptr cloud (new pcl::PointCloud); 28 pcl::PointCloud::Ptr cloud_filtered (new pcl::PointCloud); 29 pcl::PointCloudpcl::Normal::Ptr cloud_normals (new pcl::PointCloudpcl::Normal); 30 pcl::PointCloud::Ptr cloud_filtered2 (new pcl::PointCloud); 31 pcl::PointCloudpcl::Normal::Ptr cloud_normals2 (new pcl::PointCloudpcl::Normal); 32 pcl::ModelCoefficients::Ptr coefficients_plane (new pcl::ModelCoefficients), coefficients_cylinder (new pcl::ModelCoefficients); 33 pcl::PointIndices::Ptr inliers_plane (new pcl::PointIndices), inliers_cylinder (new pcl::PointIndices); 34 35 // Read in the cloud data 36 reader.read ("table_scene_mug_stereo_textured.pcd", *cloud); 37 std::cerr << "PointCloud has: " << cloud->size () << " data points." << std::endl; 38 39 // Build a passthrough filter to remove spurious NaNs and scene background 40 pass.setInputCloud (cloud); 41 pass.setFilterFieldName ("z"); 42 pass.setFilterLimits (0, 1.5); 43 pass.filter (*cloud_filtered); 44 std::cerr << "PointCloud after filtering has: " << cloud_filtered->size () << " data points." << std::endl; 45 46 // Estimate point normals 47 ne.setSearchMethod (tree); 48 ne.setInputCloud (cloud_filtered); 49 ne.setKSearch (50); 50 ne.compute (*cloud_normals); 51 52 // Create the segmentation object for the planar model and set all the parameters 53 seg.setOptimizeCoefficients (true); 54 seg.setModelType (pcl::SACMODEL_NORMAL_PLANE); 55 seg.setNormalDistanceWeight (0.1); 56 seg.setMethodType (pcl::SAC_RANSAC); 57 seg.setMaxIterations (100); 58 seg.setDistanceThreshold (0.03); 59 seg.setInputCloud (cloud_filtered); 60 seg.setInputNormals (cloud_normals); 61 // Obtain the plane inliers and coefficients 62 seg.segment (*inliers_plane, *coefficients_plane); 63 std::cerr << "Plane coefficients: " << *coefficients_plane << std::endl; 64 65 // Extract the planar inliers from the input cloud 66 extract.setInputCloud (cloud_filtered); 67 extract.setIndices (inliers_plane); 68 extract.setNegative (false); 69 70 // Write the planar inliers to disk 71 pcl::PointCloud::Ptr cloud_plane (new pcl::PointCloud ()); 72 extract.filter (*cloud_plane); 73 std::cerr << "PointCloud representing the planar component: " << cloud_plane->size () << " data points." << std::endl; 74 writer.write ("table_scene_mug_stereo_textured_plane.pcd", *cloud_plane, false); 75 76 // Remove the planar inliers, extract the rest 77 extract.setNegative (true); 78 extract.filter (*cloud_filtered2); 79 extract_normals.setNegative (true); 80 extract_normals.setInputCloud (cloud_normals); 81 extract_normals.setIndices (inliers_plane); 82 extract_normals.filter (*cloud_normals2); 83 84 // Create the segmentation object for cylinder segmentation and set all the parameters 85 seg.setOptimizeCoefficients (true); 86 seg.setModelType (pcl::SACMODEL_CYLINDER); 87 seg.setMethodType (pcl::SAC_RANSAC); 88 seg.setNormalDistanceWeight (0.1); 89 seg.setMaxIterations (10000); 90 seg.setDistanceThreshold (0.05); 91 seg.setRadiusLimits (0, 0.1); 92 seg.setInputCloud (cloud_filtered2); 93 seg.setInputNormals (cloud_normals2); 94 95 // Obtain the cylinder inliers and coefficients 96 seg.segment (*inliers_cylinder, *coefficients_cylinder); 97 std::cerr << "Cylinder coefficients: " << *coefficients_cylinder << std::endl; 98 99 // Write the cylinder inliers to disk 100 extract.setInputCloud (cloud_filtered2); 101 extract.setIndices (inliers_cylinder); 102 extract.setNegative (false); 103 pcl::PointCloud::Ptr cloud_cylinder (new pcl::PointCloud ()); 104 extract.filter (*cloud_cylinder); 105 if (cloud_cylinder->points.empty ()) 106 std::cerr << "Can't find the cylindrical component." << std::endl; 107 else 108 { 109 std::cerr << "PointCloud representing the cylindrical component: " << cloud_cylinder->size () << " data points." << std::endl; 110 writer.write ("table_scene_mug_stereo_textured_cylinder.pcd", *cloud_cylinder, false); 111 } 112 return (0); 113}
The explanation
The only relevant lines are the lines below, as the other operations are already described in the other tutorials.
// Create the segmentation object for cylinder segmentation and set all the parameters seg.setOptimizeCoefficients (true); seg.setModelType (pcl::SACMODEL_CYLINDER); seg.setMethodType (pcl::SAC_RANSAC); seg.setNormalDistanceWeight (0.1); seg.setMaxIterations (10000); seg.setDistanceThreshold (0.05); seg.setRadiusLimits (0, 0.1);
As seen, we’re using a RANSAC robust estimator to obtain the cylinder coefficients, and we’re imposing a distance threshold from each inlier point to the model no greater than 5cm. In addition, we set the surface normals influence to a weight of 0.1, and we limit the radius of the cylindrical model to be smaller than 10cm.
Compiling and running the program
Add the following lines to your CMakeLists.txt file:
1cmake_minimum_required(VERSION 3.5 FATAL_ERROR) 2 3project(cylinder_segmentation) 4 5find_package(PCL 1.2 REQUIRED) 6 7add_executable (cylinder_segmentation cylinder_segmentation.cpp) 8target_link_libraries (cylinder_segmentation ${PCL_LIBRARIES})
After you have made the executable, you can run it. Simply do:
$ ./cylinder_segmentation
You will see something similar to:
PointCloud has: 307200 data points. PointCloud after filtering has: 139897 data points. [pcl::SACSegmentationFromNormals::initSACModel] Using a model of type: SACMODEL_NORMAL_PLANE [pcl::SACSegmentationFromNormals::initSACModel] Setting normal distance weight to 0.100000 [pcl::SACSegmentationFromNormals::initSAC] Using a method of type: SAC_RANSAC with a model threshold of 0.030000 [pcl::SACSegmentationFromNormals::initSAC] Setting the maximum number of iterations to 100 Plane coefficients: header: seq: 0 stamp: 0.000000000 frame_id: values[] values[0]: -0.0161854 values[1]: 0.837724 values[2]: 0.545855 values[3]: -0.528787
PointCloud representing the planar component: 117410 data points. [pcl::SACSegmentationFromNormals::initSACModel] Using a model of type: SACMODEL_CYLINDER [pcl::SACSegmentationFromNormals::initSACModel] Setting radius limits to 0.000000/0.100000 [pcl::SACSegmentationFromNormals::initSACModel] Setting normal distance weight to 0.100000 [pcl::SACSegmentationFromNormals::initSAC] Using a method of type: SAC_RANSAC with a model threshold of 0.050000 [pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] LM solver finished with exit code 2, having a residual norm of 0.322616. Initial solution: 0.0452105 0.0924601 0.790215 0.20495 -0.721649 -0.661225 0.0422902 Final solution: 0.0452105 0.0924601 0.790215 0.20495 -0.721649 -0.661225 0.0396354 Cylinder coefficients: header: seq: 0 stamp: 0.000000000 frame_id: values[] values[0]: 0.0452105 values[1]: 0.0924601 values[2]: 0.790215 values[3]: 0.20495 values[4]: -0.721649 values[5]: -0.661225 values[6]: 0.0396354
PointCloud representing the cylindrical component: 8625 data points.