arviz.InferenceData.sel — ArviZ 0.14.0 documentation (original) (raw)
InferenceData.sel(groups: Optional[Union[str, List[str]]] = None, filter_groups: Optional[Literal['like', 'regex']] = None, inplace: bool = False, chain_prior: Optional[bool] = None, **kwargs: Any) → Optional[arviz.data.inference_data.InferenceDataT][source]#
Perform an xarray selection on all groups.
Loops groups to perform Dataset.sel(key=item) for every kwarg if key is a dimension of the dataset. One example could be performing a burn in cut on the InferenceData object or discarding a chain. The selection is performed on all relevant groups (like posterior, prior, sample stats) while non relevant groups like observed data are omitted. See xarray.Dataset.sel
Parameters
groupsstr or list of str, optional
Groups where the selection is to be applied. Can either be group names or metagroup names.
filter_groups{None, “like”, “regex”}, optional, default=None
If None
(default), interpret groups as the real group or metagroup names. If “like”, interpret groups as substrings of the real group or metagroup names. If “regex”, interpret groups as regular expressions on the real group or metagroup names. A la pandas.filter
.
inplacebool, optional
If True
, modify the InferenceData object inplace, otherwise, return the modified copy.
chain_priorbool, optional, deprecated
If False
, do not select prior related groups using chain
dim. Otherwise, use selection on chain
if present. Default=False
kwargsdict, optional
It must be accepted by Dataset.sel().
Returns
InferenceData
A new InferenceData object by default. When inplace==True
perform selection in-place and return None
See also
Returns a new dataset with each array indexed by tick labels along the specified dimension(s).
Returns a new dataset with each array indexed along the specified dimension(s).
Examples
Use sel
to discard one chain of the InferenceData object. We first check the dimensions of the original object:
import arviz as az idata = az.load_arviz_data("centered_eight") idata
- posterior
<xarray.Dataset>
Dimensions: (chain: 4, draw: 500, school: 8)
Coordinates:- chain (chain) int64 0 1 2 3
- draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
mu (chain, draw) float64 ...
theta (chain, draw, school) float64 ...
tau (chain, draw) float64 ...
Attributes:
created_at: 2022-10-13T14:37:37.315398
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2
sampling_time: 7.480114936828613
tuning_steps: 1000- Dimensions:
* chain: 4
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (3)
* mu
(chain, draw)
float64
...
[2000 values with dtype=float64]
* theta
(chain, draw, school)
float64
...
[16000 values with dtype=float64]
* tau
(chain, draw)
float64
...
[2000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (6)
created_at :
2022-10-13T14:37:37.315398
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
sampling_time :
7.480114936828613
tuning_steps :
1000
- Dimensions:
- posterior_predictive
<xarray.Dataset>
Dimensions: (chain: 4, draw: 500, school: 8)
Coordinates:- chain (chain) int64 0 1 2 3
- draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 ...
Attributes:
created_at: 2022-10-13T14:37:41.460544
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 4
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[16000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:41.460544
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- log_likelihood
<xarray.Dataset>
Dimensions: (chain: 4, draw: 500, school: 8)
Coordinates:- chain (chain) int64 0 1 2 3
- draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 ...
Attributes:
created_at: 2022-10-13T14:37:37.487399
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 4
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[16000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:37.487399
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- sample_stats
<xarray.Dataset>
Dimensions: (chain: 4, draw: 500)
Coordinates:- chain (chain) int64 0 1 2 3
- draw (draw) int64 0 1 2 3 4 5 6 ... 494 495 496 497 498 499
Data variables: (12/16)
max_energy_error (chain, draw) float64 ...
energy_error (chain, draw) float64 ...
lp (chain, draw) float64 ...
index_in_trajectory (chain, draw) int64 ...
acceptance_rate (chain, draw) float64 ...
diverging (chain, draw) bool ...
... ...
smallest_eigval (chain, draw) float64 ...
step_size_bar (chain, draw) float64 ...
step_size (chain, draw) float64 ...
energy (chain, draw) float64 ...
tree_depth (chain, draw) int64 ...
perf_counter_diff (chain, draw) float64 ...
Attributes:
created_at: 2022-10-13T14:37:37.324929
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2
sampling_time: 7.480114936828613
tuning_steps: 1000- Dimensions:
* chain: 4
* draw: 500 - Coordinates: (2)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499]) - Data variables: (16)
* max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
* energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
* lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
* index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
* acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
* diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
* process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
* n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
* perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
* largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
* smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
* step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
* step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
* energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
* tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
* perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64] - Indexes: (2)
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500)) - Attributes: (6)
created_at :
2022-10-13T14:37:37.324929
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
sampling_time :
7.480114936828613
tuning_steps :
1000
- Dimensions:
- prior
<xarray.Dataset>
Dimensions: (chain: 1, draw: 500, school: 8)
Coordinates:- chain (chain) int64 0
- draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
tau (chain, draw) float64 ...
theta (chain, draw, school) float64 ...
mu (chain, draw) float64 ...
Attributes:
created_at: 2022-10-13T14:37:26.602116
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 1
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (3)
* tau
(chain, draw)
float64
...
[500 values with dtype=float64]
* theta
(chain, draw, school)
float64
...
[4000 values with dtype=float64]
* mu
(chain, draw)
float64
...
[500 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:26.602116
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- prior_predictive
<xarray.Dataset>
Dimensions: (chain: 1, draw: 500, school: 8)
Coordinates:- chain (chain) int64 0
- draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 ...
Attributes:
created_at: 2022-10-13T14:37:26.604969
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 1
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[4000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:26.604969
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- observed_data
<xarray.Dataset>
Dimensions: (school: 8)
Coordinates:- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
obs (school) float64 ...
Attributes:
created_at: 2022-10-13T14:37:26.606375
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* school: 8 - Coordinates: (1)
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (1)
* obs
(school)
float64
...
[8 values with dtype=float64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:26.606375
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
- constant_data
<xarray.Dataset>
Dimensions: (school: 8)
Coordinates:- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
scores (school) float64 ...
Attributes:
created_at: 2022-10-13T14:37:26.607471
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* school: 8 - Coordinates: (1)
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (1)
* scores
(school)
float64
...
[8 values with dtype=float64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:26.607471
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
In order to remove the third chain:
idata_subset = idata.sel(chain=[0, 1, 3], groups="posterior_groups") idata_subset
- posterior
<xarray.Dataset>
Dimensions: (chain: 3, draw: 500, school: 8)
Coordinates:- chain (chain) int64 0 1 3
- draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
mu (chain, draw) float64 ...
theta (chain, draw, school) float64 ...
tau (chain, draw) float64 ...
Attributes:
created_at: 2022-10-13T14:37:37.315398
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2
sampling_time: 7.480114936828613
tuning_steps: 1000- Dimensions:
* chain: 3
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (3)
* mu
(chain, draw)
float64
...
[1500 values with dtype=float64]
* theta
(chain, draw, school)
float64
...
[12000 values with dtype=float64]
* tau
(chain, draw)
float64
...
[1500 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0, 1, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (6)
created_at :
2022-10-13T14:37:37.315398
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
sampling_time :
7.480114936828613
tuning_steps :
1000
- Dimensions:
- posterior_predictive
<xarray.Dataset>
Dimensions: (chain: 3, draw: 500, school: 8)
Coordinates:- chain (chain) int64 0 1 3
- draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 ...
Attributes:
created_at: 2022-10-13T14:37:41.460544
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 3
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[12000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0, 1, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:41.460544
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- log_likelihood
<xarray.Dataset>
Dimensions: (chain: 3, draw: 500, school: 8)
Coordinates:- chain (chain) int64 0 1 3
- draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 ...
Attributes:
created_at: 2022-10-13T14:37:37.487399
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 3
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[12000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0, 1, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:37.487399
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- sample_stats
<xarray.Dataset>
Dimensions: (chain: 3, draw: 500)
Coordinates:- chain (chain) int64 0 1 3
- draw (draw) int64 0 1 2 3 4 5 6 ... 494 495 496 497 498 499
Data variables: (12/16)
max_energy_error (chain, draw) float64 ...
energy_error (chain, draw) float64 ...
lp (chain, draw) float64 ...
index_in_trajectory (chain, draw) int64 ...
acceptance_rate (chain, draw) float64 ...
diverging (chain, draw) bool ...
... ...
smallest_eigval (chain, draw) float64 ...
step_size_bar (chain, draw) float64 ...
step_size (chain, draw) float64 ...
energy (chain, draw) float64 ...
tree_depth (chain, draw) int64 ...
perf_counter_diff (chain, draw) float64 ...
Attributes:
created_at: 2022-10-13T14:37:37.324929
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2
sampling_time: 7.480114936828613
tuning_steps: 1000- Dimensions:
* chain: 3
* draw: 500 - Coordinates: (2)
* chain
(chain)
int64
0 1 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499]) - Data variables: (16)
* max_energy_error
(chain, draw)
float64
...
[1500 values with dtype=float64]
* energy_error
(chain, draw)
float64
...
[1500 values with dtype=float64]
* lp
(chain, draw)
float64
...
[1500 values with dtype=float64]
* index_in_trajectory
(chain, draw)
int64
...
[1500 values with dtype=int64]
* acceptance_rate
(chain, draw)
float64
...
[1500 values with dtype=float64]
* diverging
(chain, draw)
bool
...
[1500 values with dtype=bool]
* process_time_diff
(chain, draw)
float64
...
[1500 values with dtype=float64]
* n_steps
(chain, draw)
float64
...
[1500 values with dtype=float64]
* perf_counter_start
(chain, draw)
float64
...
[1500 values with dtype=float64]
* largest_eigval
(chain, draw)
float64
...
[1500 values with dtype=float64]
* smallest_eigval
(chain, draw)
float64
...
[1500 values with dtype=float64]
* step_size_bar
(chain, draw)
float64
...
[1500 values with dtype=float64]
* step_size
(chain, draw)
float64
...
[1500 values with dtype=float64]
* energy
(chain, draw)
float64
...
[1500 values with dtype=float64]
* tree_depth
(chain, draw)
int64
...
[1500 values with dtype=int64]
* perf_counter_diff
(chain, draw)
float64
...
[1500 values with dtype=float64] - Indexes: (2)
* PandasIndex
PandasIndex(Int64Index([0, 1, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500)) - Attributes: (6)
created_at :
2022-10-13T14:37:37.324929
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
sampling_time :
7.480114936828613
tuning_steps :
1000
- Dimensions:
- prior
<xarray.Dataset>
Dimensions: (chain: 1, draw: 500, school: 8)
Coordinates:- chain (chain) int64 0
- draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
tau (chain, draw) float64 ...
theta (chain, draw, school) float64 ...
mu (chain, draw) float64 ...
Attributes:
created_at: 2022-10-13T14:37:26.602116
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 1
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (3)
* tau
(chain, draw)
float64
...
[500 values with dtype=float64]
* theta
(chain, draw, school)
float64
...
[4000 values with dtype=float64]
* mu
(chain, draw)
float64
...
[500 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:26.602116
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- prior_predictive
<xarray.Dataset>
Dimensions: (chain: 1, draw: 500, school: 8)
Coordinates:- chain (chain) int64 0
- draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 ...
Attributes:
created_at: 2022-10-13T14:37:26.604969
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 1
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[4000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:26.604969
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- observed_data
<xarray.Dataset>
Dimensions: (school: 8)
Coordinates:- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
obs (school) float64 ...
Attributes:
created_at: 2022-10-13T14:37:26.606375
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* school: 8 - Coordinates: (1)
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (1)
* obs
(school)
float64
...
[8 values with dtype=float64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:26.606375
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
- constant_data
<xarray.Dataset>
Dimensions: (school: 8)
Coordinates:- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'
Data variables:
scores (school) float64 ...
Attributes:
created_at: 2022-10-13T14:37:26.607471
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* school: 8 - Coordinates: (1)
* school
(school)
object
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype=object) - Data variables: (1)
* scores
(school)
float64
...
[8 values with dtype=float64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
created_at :
2022-10-13T14:37:26.607471
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- school (school) object 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'