arviz.InferenceData.stack — ArviZ 0.14.0 documentation (original) (raw)
InferenceData.stack(dimensions=None, groups=None, filter_groups=None, inplace=False, **kwargs)[source]#
Perform an xarray stacking on all groups.
Stack any number of existing dimensions into a single new dimension. Loops groups to perform Dataset.stack(key=value) for every kwarg if value is a dimension of the dataset. The selection is performed on all relevant groups (like posterior, prior, sample stats) while non relevant groups like observed data are omitted. See xarray.Dataset.stack()
Parameters
dimensionsdict, optional
Names of new dimensions, and the existing dimensions that they replace.
groups: str or list of str, optional
Groups where the selection is to be applied. Can either be group names or metagroup names.
filter_groups{None, “like”, “regex”}, optional
If None
(default), interpret groups as the real group or metagroup names. If “like”, interpret groups as substrings of the real group or metagroup names. If “regex”, interpret groups as regular expressions on the real group or metagroup names. A la pandas.filter
.
inplacebool, optional
If True
, modify the InferenceData object inplace, otherwise, return the modified copy.
kwargsdict, optional
It must be accepted by xarray.Dataset.stack().
Returns
InferenceData
A new InferenceData object by default. When inplace==True
perform selection in-place and return None
See also
Stack any number of existing dimensions into a single new dimension.
Perform an xarray unstacking on all groups of InferenceData object.
Examples
Use stack
to stack any number of existing dimensions into a single new dimension. We first check the original object:
import arviz as az idata = az.load_arviz_data("rugby") idata
- posterior
<xarray.Dataset>
Dimensions: (chain: 4, draw: 500, team: 6)
Coordinates:- chain (chain) int64 0 1 2 3
- draw (draw) int64 0 1 2 3 4 5 6 7 ... 492 493 494 495 496 497 498 499
- team (team) object 'Wales' 'France' 'Ireland' ... 'Italy' 'England'
Data variables:
home (chain, draw) float64 ...
intercept (chain, draw) float64 ...
atts_star (chain, draw, team) float64 ...
defs_star (chain, draw, team) float64 ...
sd_att (chain, draw) float64 ...
sd_def (chain, draw) float64 ...
atts (chain, draw, team) float64 ...
defs (chain, draw, team) float64 ...
Attributes:
created_at: 2019-07-12T20:31:53.545143
inference_library: pymc3
inference_library_version: 3.7- Dimensions:
* chain: 4
* draw: 500
* team: 6 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* team
(team)
object
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'],
dtype=object) - Data variables: (8)
* home
(chain, draw)
float64
...
[2000 values with dtype=float64]
* intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
* atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
* defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
* sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
* sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
* atts
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
* defs
(chain, draw, team)
float64
...
[12000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team')) - Attributes: (3)
created_at :
2019-07-12T20:31:53.545143
inference_library :
pymc3
inference_library_version :
3.7
- Dimensions:
- posterior_predictive
<xarray.Dataset>
Dimensions: (chain: 4, draw: 500, match: 60)
Coordinates:- chain (chain) int64 0 1 2 3
- draw (draw) int64 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- match (match) object 'Wales Italy' ... 'Ireland England'
Data variables:
home_points (chain, draw, match) int64 ...
away_points (chain, draw, match) int64 ...
Attributes:
created_at: 2019-07-12T20:31:53.563854
inference_library: pymc3
inference_library_version: 3.7- Dimensions:
* chain: 4
* draw: 500
* match: 60 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* match
(match)
object
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype=object) - Data variables: (2)
* home_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
* away_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64] - Indexes: (3)
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (3)
created_at :
2019-07-12T20:31:53.563854
inference_library :
pymc3
inference_library_version :
3.7
- Dimensions:
- sample_stats
<xarray.Dataset>
Dimensions: (chain: 4, draw: 500)
Coordinates:- chain (chain) int64 0 1 2 3
- draw (draw) int64 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499
Data variables:
energy_error (chain, draw) float64 ...
energy (chain, draw) float64 ...
tree_size (chain, draw) float64 ...
tune (chain, draw) bool ...
mean_tree_accept (chain, draw) float64 ...
lp (chain, draw) float64 ...
depth (chain, draw) int64 ...
max_energy_error (chain, draw) float64 ...
step_size (chain, draw) float64 ...
step_size_bar (chain, draw) float64 ...
diverging (chain, draw) bool ...
Attributes:
created_at: 2019-07-12T20:31:53.555203
inference_library: pymc3
inference_library_version: 3.7- Dimensions:
* chain: 4
* draw: 500 - Coordinates: (2)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499]) - Data variables: (11)
* energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
* energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
* tree_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
* tune
(chain, draw)
bool
...
[2000 values with dtype=bool]
* mean_tree_accept
(chain, draw)
float64
...
[2000 values with dtype=float64]
* lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
* depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
* max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
* step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
* step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
* diverging
(chain, draw)
bool
...
[2000 values with dtype=bool] - Indexes: (2)
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500)) - Attributes: (3)
created_at :
2019-07-12T20:31:53.555203
inference_library :
pymc3
inference_library_version :
3.7
- Dimensions:
- prior
<xarray.Dataset>
Dimensions: (chain: 1, draw: 500, team: 6, match: 60)
Coordinates:- chain (chain) int64 0
- draw (draw) int64 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- team (team) object 'Wales' 'France' 'Ireland' ... 'Italy' 'England'
- match (match) object 'Wales Italy' ... 'Ireland England'
Data variables:
sd_att_log__ (chain, draw) float64 ...
intercept (chain, draw) float64 ...
atts_star (chain, draw, team) float64 ...
defs_star (chain, draw, team) float64 ...
away_points (chain, draw, match) int64 ...
sd_att (chain, draw) float64 ...
sd_def_log__ (chain, draw) float64 ...
home (chain, draw) float64 ...
atts (chain, draw, team) float64 ...
sd_def (chain, draw) float64 ...
home_points (chain, draw, match) int64 ...
defs (chain, draw, team) float64 ...
Attributes:
created_at: 2019-07-12T20:31:53.573731
inference_library: pymc3
inference_library_version: 3.7- Dimensions:
* chain: 1
* draw: 500
* team: 6
* match: 60 - Coordinates: (4)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499])
* team
(team)
object
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'],
dtype=object)
* match
(match)
object
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype=object) - Data variables: (12)
* sd_att_log__
(chain, draw)
float64
...
[500 values with dtype=float64]
* intercept
(chain, draw)
float64
...
[500 values with dtype=float64]
* atts_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
* defs_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
* away_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
* sd_att
(chain, draw)
float64
...
[500 values with dtype=float64]
* sd_def_log__
(chain, draw)
float64
...
[500 values with dtype=float64]
* home
(chain, draw)
float64
...
[500 values with dtype=float64]
* atts
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
* sd_def
(chain, draw)
float64
...
[500 values with dtype=float64]
* home_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
* defs
(chain, draw, team)
float64
...
[3000 values with dtype=float64] - Indexes: (4)
* PandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (3)
created_at :
2019-07-12T20:31:53.573731
inference_library :
pymc3
inference_library_version :
3.7
- Dimensions:
- observed_data
<xarray.Dataset>
Dimensions: (match: 60)
Coordinates:- match (match) object 'Wales Italy' ... 'Ireland England'
Data variables:
home_points (match) float64 ...
away_points (match) float64 ...
Attributes:
created_at: 2019-07-12T20:31:53.581293
inference_library: pymc3
inference_library_version: 3.7- Dimensions:
* match: 60 - Coordinates: (1)
* match
(match)
object
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype=object) - Data variables: (2)
* home_points
(match)
float64
...
[60 values with dtype=float64]
* away_points
(match)
float64
...
[60 values with dtype=float64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (3)
created_at :
2019-07-12T20:31:53.581293
inference_library :
pymc3
inference_library_version :
3.7
- Dimensions:
- match (match) object 'Wales Italy' ... 'Ireland England'
In order to stack two dimensions chain
and draw
to sample
, we can use:
idata.stack(sample=["chain", "draw"], inplace=True) idata
- posterior
<xarray.Dataset>
Dimensions: (team: 6, sample: 2000)
Coordinates:- team (team) object 'Wales' 'France' 'Ireland' ... 'Italy' 'England'
- sample (sample) object MultiIndex
- chain (sample) int64 0 0 0 0 0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3 3 3 3
- draw (sample) int64 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
Data variables:
home (sample) float64 0.1642 0.1162 0.09299 ... 0.1452 0.148 0.2265
intercept (sample) float64 2.893 2.941 2.939 2.977 ... 2.951 2.903 2.892
atts_star (team, sample) float64 0.1673 0.226 0.1959 ... -0.01013 0.02878
defs_star (team, sample) float64 -0.03638 0.01689 ... -0.06325 -0.0649
sd_att (sample) float64 0.4854 0.1438 0.2139 ... 0.4472 0.2883 0.4591
sd_def (sample) float64 0.2747 1.033 0.6363 ... 0.3294 0.5574 0.2849
atts (team, sample) float64 0.1063 0.1538 0.1781 ... 0.2923 0.2029
defs (team, sample) float64 -0.06765 -0.1792 ... -0.2033 -0.1986
Attributes:
created_at: 2019-07-12T20:31:53.545143
inference_library: pymc3
inference_library_version: 3.7- Dimensions:
* team: 6
* sample: 2000 - Coordinates: (4)
* team
(team)
object
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'],
dtype=object)
* sample
(sample)
object
MultiIndex
array([(0, 0), (0, 1), (0, 2), ..., (3, 497), (3, 498), (3, 499)], dtype=object)
* chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3
array([0, 0, 0, ..., 3, 3, 3])
* draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499]) - Data variables: (8)
* home
(sample)
float64
0.1642 0.1162 ... 0.148 0.2265
array([0.16416114, 0.11615329, 0.09299399, ..., 0.14520732, 0.1479837 ,
0.22646978])
* intercept
(sample)
float64
2.893 2.941 2.939 ... 2.903 2.892
array([2.89297934, 2.94131874, 2.93932559, ..., 2.95080202, 2.90314993,
2.89236378])
* atts_star
(team, sample)
float64
0.1673 0.226 ... -0.01013 0.02878
array([[ 0.16729464, 0.22595602, 0.19585843, ..., 0.04037703,
-0.15318047, 0.0439508 ],
[ 0.04184462, -0.01061068, -0.02557158, ..., -0.19869967,
-0.36454855, -0.28802773],
[ 0.19768228, 0.21163939, 0.07592131, ..., -0.00318955,
-0.19703187, -0.07960552],
[-0.00657714, 0.00704312, -0.13172895, ..., -0.21086333,
-0.40914146, -0.28441131],
[-0.39986738, -0.29989893, -0.28073312, ..., -0.54700652,
-0.68070526, -0.46519723],
[ 0.36544713, 0.29863077, 0.27303024, ..., 0.15698882,
-0.01012935, 0.02878168]])
* defs_star
(team, sample)
float64
-0.03638 0.01689 ... -0.0649
array([[-0.03637973, 0.01688633, -0.04772117, ..., 0.04243292,
-0.04766927, 0.08499556],
[-0.04108582, 0.18232406, 0.0077836 , ..., 0.27762179,
0.15738931, 0.01184231],
[-0.36962623, -0.13254416, -0.4321293 , ..., -0.1509432 ,
-0.26653811, -0.21308576],
[ 0.23949128, 0.38338218, 0.19421648, ..., 0.44175287,
0.38385837, 0.26952197],
[ 0.58492753, 0.77865347, 0.69324086, ..., 0.82926404,
0.67656824, 0.71359273],
[-0.18971375, -0.05207356, -0.11464671, ..., 0.07066208,
-0.06325465, -0.06489668]])
* sd_att
(sample)
float64
0.4854 0.1438 ... 0.2883 0.4591
array([0.48535928, 0.14382044, 0.21386694, ..., 0.44717987, 0.28832093,
0.45911895])
* sd_def
(sample)
float64
0.2747 1.033 ... 0.5574 0.2849
array([0.27465589, 1.03265253, 0.63628567, ..., 0.3293513 , 0.5574104 ,
0.28490074])
* atts
(team, sample)
float64
0.1063 0.1538 ... 0.2923 0.2029
array([[ 0.10632395, 0.1538294 , 0.17806237, ..., 0.16744257,
0.14927569, 0.21803568],
[-0.01912607, -0.08273729, -0.04336763, ..., -0.07163413,
-0.06209239, -0.11394285],
[ 0.13671159, 0.13951278, 0.05812526, ..., 0.12387599,
0.10542429, 0.09447937],
[-0.06754783, -0.06508349, -0.14952501, ..., -0.08379779,
-0.1066853 , -0.11032643],
[-0.46083807, -0.37202555, -0.29852918, ..., -0.41994098,
-0.3782491 , -0.29111234],
[ 0.30447644, 0.22650416, 0.25523419, ..., 0.28405435,
0.29232681, 0.20286656]])
* defs
(team, sample)
float64
-0.06765 -0.1792 ... -0.1986
array([[-0.06764861, -0.17921839, -0.09784513, ..., -0.2093655 ,
-0.18772825, -0.04866613],
[-0.0723547 , -0.01378066, -0.04234036, ..., 0.02582338,
0.01733033, -0.12181938],
[-0.40089511, -0.32864888, -0.48225326, ..., -0.40274162,
-0.40659709, -0.34674745],
[ 0.2082224 , 0.18727746, 0.14409252, ..., 0.18995445,
0.24379939, 0.13586028],
[ 0.55365865, 0.58254875, 0.6431169 , ..., 0.57746562,
0.53650926, 0.57993105],
[-0.22098263, -0.24817828, -0.16477067, ..., -0.18113633,
-0.20331363, -0.19855837]]) - Indexes: (2)
* PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
* PandasMultiIndex
PandasIndex(MultiIndex([(0, 0),
(0, 1),
(0, 2),
(0, 3),
(0, 4),
(0, 5),
(0, 6),
(0, 7),
(0, 8),
(0, 9),
...
(3, 490),
(3, 491),
(3, 492),
(3, 493),
(3, 494),
(3, 495),
(3, 496),
(3, 497),
(3, 498),
(3, 499)],
name='sample', length=2000)) - Attributes: (3)
created_at :
2019-07-12T20:31:53.545143
inference_library :
pymc3
inference_library_version :
3.7
- Dimensions:
- posterior_predictive
<xarray.Dataset>
Dimensions: (match: 60, sample: 2000)
Coordinates:- match (match) object 'Wales Italy' ... 'Ireland England'
- sample (sample) object MultiIndex
- chain (sample) int64 0 0 0 0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3 3 3 3
- draw (sample) int64 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
Data variables:
home_points (match, sample) int64 43 43 42 45 43 49 ... 20 14 21 29 26 27
away_points (match, sample) int64 7 14 9 15 10 12 8 ... 12 14 16 18 20 12
Attributes:
created_at: 2019-07-12T20:31:53.563854
inference_library: pymc3
inference_library_version: 3.7- Dimensions:
* match: 60
* sample: 2000 - Coordinates: (4)
* match
(match)
object
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype=object)
* sample
(sample)
object
MultiIndex
array([(0, 0), (0, 1), (0, 2), ..., (3, 497), (3, 498), (3, 499)], dtype=object)
* chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3
array([0, 0, 0, ..., 3, 3, 3])
* draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499]) - Data variables: (2)
* home_points
(match, sample)
int64
43 43 42 45 43 ... 14 21 29 26 27
array([[43, 43, 42, ..., 40, 42, 44],
[ 9, 18, 12, ..., 10, 8, 14],
[27, 27, 30, ..., 42, 25, 34],
...,
[37, 33, 31, ..., 46, 30, 49],
[20, 20, 15, ..., 20, 16, 17],
[23, 17, 20, ..., 29, 26, 27]])
* away_points
(match, sample)
int64
7 14 9 15 10 12 ... 14 16 18 20 12
array([[ 7, 14, 9, ..., 11, 20, 12],
[16, 20, 26, ..., 25, 25, 23],
[ 9, 18, 7, ..., 15, 11, 6],
...,
[ 9, 9, 28, ..., 18, 17, 18],
[22, 23, 14, ..., 17, 23, 28],
[14, 13, 14, ..., 18, 20, 12]]) - Indexes: (2)
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match'))
* PandasMultiIndex
PandasIndex(MultiIndex([(0, 0),
(0, 1),
(0, 2),
(0, 3),
(0, 4),
(0, 5),
(0, 6),
(0, 7),
(0, 8),
(0, 9),
...
(3, 490),
(3, 491),
(3, 492),
(3, 493),
(3, 494),
(3, 495),
(3, 496),
(3, 497),
(3, 498),
(3, 499)],
name='sample', length=2000)) - Attributes: (3)
created_at :
2019-07-12T20:31:53.563854
inference_library :
pymc3
inference_library_version :
3.7
- Dimensions:
- sample_stats
<xarray.Dataset>
Dimensions: (sample: 2000)
Coordinates:- sample (sample) object MultiIndex
- chain (sample) int64 0 0 0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3 3 3
- draw (sample) int64 0 1 2 3 4 5 6 ... 494 495 496 497 498 499
Data variables:
energy_error (sample) float64 -0.07666 -0.4523 ... 0.115 -0.07691
energy (sample) float64 540.2 545.3 542.3 ... 544.0 544.0 545.6
tree_size (sample) float64 15.0 63.0 31.0 15.0 ... 63.0 31.0 31.0
tune (sample) bool True False False False ... False False False
mean_tree_accept (sample) float64 1.0 0.8851 0.8875 ... 0.7791 0.7539
lp (sample) float64 -536.4 -536.0 -533.8 ... -536.1 -536.4
depth (sample) int64 4 6 5 4 4 4 5 5 5 3 ... 4 6 6 4 6 5 3 6 5 5
max_energy_error (sample) float64 -0.5361 -0.5871 0.3981 ... 0.7109 1.014
step_size (sample) float64 0.2469 0.2469 0.2469 ... 0.2459 0.2459
step_size_bar (sample) float64 0.2313 0.2313 0.2313 ... 0.2488 0.2488
diverging (sample) bool False False False ... False False False
Attributes:
created_at: 2019-07-12T20:31:53.555203
inference_library: pymc3
inference_library_version: 3.7- Dimensions:
* sample: 2000 - Coordinates: (3)
* sample
(sample)
object
MultiIndex
array([(0, 0), (0, 1), (0, 2), ..., (3, 497), (3, 498), (3, 499)], dtype=object)
* chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3
array([0, 0, 0, ..., 3, 3, 3])
* draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499]) - Data variables: (11)
* energy_error
(sample)
float64
-0.07666 -0.4523 ... 0.115 -0.07691
array([-0.07665548, -0.45233039, 0.22540732, ..., 0.10555054,
0.11502132, -0.07691355])
* energy
(sample)
float64
540.2 545.3 542.3 ... 544.0 545.6
array([540.22190412, 545.26232179, 542.28589655, ..., 543.9921739 ,
544.0250853 , 545.58711626])
* tree_size
(sample)
float64
15.0 63.0 31.0 ... 63.0 31.0 31.0
array([15., 63., 31., ..., 63., 31., 31.])
* tune
(sample)
bool
True False False ... False False
array([ True, False, False, ..., False, False, False])
* mean_tree_accept
(sample)
float64
1.0 0.8851 0.8875 ... 0.7791 0.7539
array([1. , 0.88510127, 0.88754308, ..., 0.95657715, 0.77910992,
0.75385257])
* lp
(sample)
float64
-536.4 -536.0 ... -536.1 -536.4
array([-536.35140723, -536.01281293, -533.75727386, ..., -536.00029174,
-536.12295823, -536.36914949])
* depth
(sample)
int64
4 6 5 4 4 4 5 5 ... 6 4 6 5 3 6 5 5
array([4, 6, 5, ..., 6, 5, 5])
* max_energy_error
(sample)
float64
-0.5361 -0.5871 ... 0.7109 1.014
array([-0.53611028, -0.58708429, 0.39808346, ..., 0.33878237,
0.71094138, 1.01358614])
* step_size
(sample)
float64
0.2469 0.2469 ... 0.2459 0.2459
array([0.2468934, 0.2468934, 0.2468934, ..., 0.2459447, 0.2459447,
0.2459447])
* step_size_bar
(sample)
float64
0.2313 0.2313 ... 0.2488 0.2488
array([0.23127182, 0.23127182, 0.23127182, ..., 0.24883103, 0.24883103,
0.24883103])
* diverging
(sample)
bool
False False False ... False False
array([False, False, False, ..., False, False, False]) - Indexes: (1)
* PandasMultiIndex
PandasIndex(MultiIndex([(0, 0),
(0, 1),
(0, 2),
(0, 3),
(0, 4),
(0, 5),
(0, 6),
(0, 7),
(0, 8),
(0, 9),
...
(3, 490),
(3, 491),
(3, 492),
(3, 493),
(3, 494),
(3, 495),
(3, 496),
(3, 497),
(3, 498),
(3, 499)],
name='sample', length=2000)) - Attributes: (3)
created_at :
2019-07-12T20:31:53.555203
inference_library :
pymc3
inference_library_version :
3.7
- Dimensions:
- prior
<xarray.Dataset>
Dimensions: (team: 6, match: 60, sample: 500)
Coordinates:- team (team) object 'Wales' 'France' 'Ireland' ... 'Italy' 'England'
- match (match) object 'Wales Italy' ... 'Ireland England'
- sample (sample) object MultiIndex
- chain (sample) int64 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0
- draw (sample) int64 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
Data variables:
sd_att_log__ (sample) float64 1.322 -2.014 1.588 ... 0.7974 -0.8585 -0.1922
intercept (sample) float64 4.464 3.352 1.567 3.897 ... 4.363 4.128 1.049
atts_star (team, sample) float64 -2.64 -0.04968 ... -0.01713 -0.8538
defs_star (team, sample) float64 -0.7817 0.9151 2.07 ... -1.922 0.01067
away_points (match, sample) int64 11308 61 405 346 41 ... 4 15 102 259 0
sd_att (sample) float64 3.752 0.1334 4.896 ... 2.22 0.4238 0.8251
sd_def_log__ (sample) float64 -0.2662 0.2411 0.6071 ... 1.367 1.402 -1.981
home (sample) float64 -1.511 -0.001582 1.75 ... -0.02416 0.2651
atts (team, sample) float64 -4.667 0.03653 ... -0.1798 -0.8365
sd_def (sample) float64 0.7663 1.273 1.835 ... 3.922 4.063 0.138
home_points (match, sample) int64 0 16 0 3 66 16 27 ... 71 0 0 5 50 71 13
defs (team, sample) float64 -0.2517 0.8887 ... -0.1544 -0.06586
Attributes:
created_at: 2019-07-12T20:31:53.573731
inference_library: pymc3
inference_library_version: 3.7- Dimensions:
* team: 6
* match: 60
* sample: 500 - Coordinates: (5)
* team
(team)
object
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'],
dtype=object)
* match
(match)
object
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype=object)
* sample
(sample)
object
MultiIndex
array([(0, 0), (0, 1), (0, 2), ..., (0, 497), (0, 498), (0, 499)], dtype=object)
* chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0
array([0, 0, 0, ..., 0, 0, 0])
* draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499]) - Data variables: (12)
* sd_att_log__
(sample)
float64
1.322 -2.014 ... -0.8585 -0.1922
array([ 1.32237184e+00, -2.01412605e+00, 1.58840590e+00, 1.13492281e-01,
-2.52764855e-01, -1.86901686e+00, 3.13035219e-01, 4.72021174e-01,
9.15152475e-01, 9.65716443e-01, 7.22724638e-01, -3.24698898e+00,
1.56974987e+00, 2.07717647e+00, -1.22451952e-01, -9.29663407e-01,
-1.52177036e+00, 4.36687490e-01, 7.48517939e-01, -3.77022220e+00,
3.26901884e-02, -1.27079406e-01, -9.07132947e-01, 7.39989815e-01,
6.16832095e-01, -1.23378286e+00, -6.68714234e-01, -1.12469281e+00,
1.02587155e+00, 1.33039104e+00, 2.57489921e+00, 1.02275752e+00,
1.09891727e+00, 7.67978262e-01, -1.44458046e+00, 6.01878146e-01,
5.07677580e-02, 8.74848836e-01, 7.86754338e-01, -7.59529771e-01,
-1.24987303e+00, 6.29183526e-01, 1.06134732e+00, -1.19474857e-01,
-1.12303158e+00, 2.07174606e+00, 6.53864536e-01, -2.56788934e-01,
1.71088923e+00, 1.29213379e+00, 1.47225078e+00, 1.96410272e-01,
-3.61284563e-01, 1.57568403e+00, -9.32249094e-01, 1.84015214e+00,
1.57322231e+00, -5.42379357e-02, 1.95631720e+00, 8.99378294e-01,
1.89910554e+00, 3.85521031e-02, -2.94348600e-01, -1.93454613e+00,
-9.70695345e-02, -1.16887352e+00, 1.21520044e+00, 2.14321671e+00,
6.29756686e-01, -1.17818923e+00, 1.32303781e+00, -1.32129334e+00,
1.22465124e+00, 2.16524340e+00, 9.11324313e-01, 4.47376336e-02,
-4.22482032e-01, 1.13906819e+00, -4.32057648e-01, 2.44472550e+00,
...
1.65528702e+00, 4.95411725e-01, 1.86174143e+00, 1.53611405e+00,
3.47464140e-01, 4.28749134e-01, 9.15464413e-01, 3.89680277e-01,
-1.83824326e-01, -1.68138119e+00, -7.54876385e-04, 9.73730029e-01,
1.59621863e+00, 1.06024699e+00, 1.18495424e+00, 8.45263749e-01,
-1.96089084e+00, 1.91492872e+00, 7.18286553e-01, -3.79330152e-01,
-4.42736106e-01, -8.72352742e-02, 1.24269383e+00, -3.00361303e-01,
-1.75502926e+00, -1.77291315e+00, 6.19766505e-01, 2.62837333e+00,
6.25628447e-01, 1.06351076e+00, 1.24204197e+00, 8.73252252e-02,
5.38315349e-01, 1.33191385e+00, 4.66797227e-01, 1.48122541e-01,
4.37444380e-01, 9.89583008e-01, 6.37292484e-01, -2.81659299e+00,
-3.40914338e-01, 2.67677341e-01, 2.57730599e+00, 3.51548906e-01,
1.23051741e+00, -2.95516729e-01, 4.37436389e-01, 1.73666401e+00,
3.78056392e-01, -1.97576146e-01, 4.20333035e-01, -4.83233441e-01,
-3.99242806e+00, 2.22593810e-01, -6.90202777e-01, 6.21371473e-01,
-3.88672104e+00, -2.12111478e+00, 1.04485285e+00, 1.28204896e+00,
6.99824106e-01, 1.03629917e+00, -1.44163506e-01, 1.54094069e+00,
-2.72236584e-01, -3.07448818e-02, -6.00491759e-01, -1.29076750e+00,
-8.52024951e-02, 6.16434395e-01, 1.29512428e+00, 6.44009557e-01,
8.06954309e-01, -1.56232100e+00, 1.09945903e+00, 2.14225569e+00,
5.20403219e-01, 7.97414698e-01, -8.58474279e-01, -1.92243583e-01])
* intercept
(sample)
float64
4.464 3.352 1.567 ... 4.128 1.049
array([ 4.46407486, 3.35201251, 1.56734974, 3.89747916, 4.07221446,
4.2210918 , 2.27468084, 2.52847497, 1.76058955, 2.61733462,
3.97544902, 3.12698486, 3.60259713, 1.45122958, 1.97797233,
2.80539181, 1.94269909, 2.7750753 , 1.45158854, 3.63512515,
2.82403092, 4.67605634, 3.13875124, 4.18937156, 2.08838712,
3.08161996, 2.77710207, 3.89246352, 3.34174981, 2.59640278,
2.19629084, 2.37551981, 2.59112772, 1.90321045, 3.5912831 ,
3.22469288, 3.72687214, 3.25399901, 4.75173666, 4.74527111,
4.79196185, 2.7413795 , 2.70538729, 1.90923945, 2.58637918,
1.75535725, 2.49595782, 3.28278793, 1.76274026, 3.201982 ,
2.26493534, 2.13861826, 2.70300523, 3.11514927, 2.65417328,
2.69944235, 4.30778228, 2.57859402, 3.50333134, 3.12846381,
2.81738249, 2.58341834, 3.40090256, 0.62878005, 3.55864142,
1.56554316, 2.43012471, 4.37222334, 3.59389568, 3.47626393,
0.76799494, 4.50371865, 4.15834351, 3.98542186, 3.11896258,
1.72870458, 2.37526746, 2.70721057, 2.78610974, 2.09837112,
3.20841328, 2.58723077, 1.59991661, 1.14995722, 2.9989365 ,
2.86113525, 1.46252482, 2.75221658, 0.61592934, 5.57563292,
2.78917687, 3.63531225, 3.39872499, 3.65281107, 1.74248623,
-0.07890664, 2.66105335, 3.27844914, 2.6518674 , 3.10327382,
...
4.29747173, 0.75292874, 1.82985252, 2.53196647, 2.79607632,
2.45883047, 4.42074645, 3.01406915, 3.64994772, 3.45151246,
2.3657743 , 3.04015687, 2.83285198, 2.16897105, 2.74059907,
3.47690329, 3.25588892, 4.00734784, 3.59940765, 3.92598558,
3.43140537, 2.42802241, 3.76788281, 5.17489718, 3.54516877,
2.28643209, 1.21425291, 4.11344298, 3.4668057 , 0.69281142,
3.17380674, 2.64252783, 4.1615734 , 3.57294442, 2.55391922,
2.66699004, 1.63751147, 3.76733759, 4.12624007, 1.86637968,
3.68943951, 4.02947618, 3.21024417, 3.19532449, 5.55753699,
3.94829764, 2.8569232 , 4.87121284, 3.72452968, 3.13324568,
2.29173827, 2.48066415, 5.24900611, 3.48335477, 4.48861589,
1.60490107, 2.29219768, 4.83809758, 2.06545766, 2.81988521,
3.26026614, 2.74676183, 3.77088602, 2.25538637, 2.86347709,
1.96217323, 2.86721301, 3.73265034, 3.31981578, 1.49613227,
2.60485537, 2.15550377, 3.53365393, 1.53936214, 2.94644818,
3.27817507, 3.51514311, 3.33043361, 2.95863874, 0.87301537,
4.37999499, 2.2774182 , 2.81904157, 1.922094 , 1.88381551,
3.23072274, 2.52772494, 1.56724225, 5.75807221, 3.76026095,
3.49717233, 2.83654973, 5.19331726, 3.03209192, 3.29939082,
3.43787695, 1.69914229, 4.36348977, 4.12835663, 1.0487495 ])
* atts_star
(team, sample)
float64
-2.64 -0.04968 ... -0.01713 -0.8538
array([[-2.63972848e+00, -4.96781245e-02, -3.22296635e+00, ...,
-3.10776796e+00, 4.57377518e-01, -5.68268697e-02],
[ 4.17220963e+00, 2.41491655e-02, -8.00376754e+00, ...,
9.54944890e-02, 1.32317204e-01, 7.03097406e-01],
[ 7.43097495e+00, -4.38670858e-05, -8.39446663e+00, ...,
2.59881431e+00, 3.20855174e-01, 1.26075483e+00],
[-1.56762425e-01, -2.39706526e-01, 8.42308821e-01, ...,
3.04601931e+00, 8.99210583e-02, -8.69381566e-01],
[ 7.15723569e+00, -2.26200230e-01, -2.74665648e+00, ...,
-1.34535468e-01, -7.42520704e-03, -2.87430313e-01],
[-3.79781405e+00, -2.57548657e-02, 2.97692448e+00, ...,
1.08166408e-01, -1.71279826e-02, -8.53817289e-01]])
* defs_star
(team, sample)
float64
-0.7817 0.9151 ... -1.922 0.01067
array([[-7.81698500e-01, 9.15138391e-01, 2.07040281e+00, ...,
-1.81421387e+00, -5.95188574e+00, 2.91682638e-01],
[-1.47788163e-01, -8.60824915e-01, -2.70767349e+00, ...,
-4.33219801e+00, -9.71663549e-01, -1.39103532e-01],
[-4.24018929e-01, 2.15014962e-03, -5.79772718e-02, ...,
-1.69512706e-01, -9.23213677e-02, 5.52330279e-02],
[ 5.06560383e-01, 6.37676516e-01, -9.69415762e-01, ...,
6.09530859e+00, 2.21659928e+00, 7.51900741e-02],
[-6.02829785e-01, -7.77608159e-01, -7.96513550e+00, ...,
-9.47305036e-01, -3.88654601e+00, 1.65530290e-01],
[-1.73048121e+00, 2.42251755e-01, -2.26892212e+00, ...,
-2.95619896e+00, -1.92247766e+00, 1.06722414e-02]])
* away_points
(match, sample)
int64
11308 61 405 346 ... 15 102 259 0
array([[11308, 61, 405, ..., 14, 1, 2],
[ 0, 11, 962, ..., 2, 111, 0],
[ 11, 21, 1662, ..., 1850, 301, 2],
...,
[41246, 45, 21, ..., 39506, 2838, 2],
[ 3, 18, 4, ..., 0, 171, 2],
[ 0, 34, 13910, ..., 102, 259, 0]])
* sd_att
(sample)
float64
3.752 0.1334 ... 0.4238 0.8251
array([3.75231070e+00, 1.33436970e-01, 4.89593808e+00, 1.12018324e+00,
7.76650486e-01, 1.54275261e-01, 1.36756970e+00, 1.60323133e+00,
2.49715598e+00, 2.62666884e+00, 2.06003843e+00, 3.88911337e-02,
4.80544605e+00, 7.98189990e+00, 8.84748414e-01, 3.94686537e-01,
2.18325031e-01, 1.54757237e+00, 2.11386482e+00, 2.30469417e-02,
1.03323038e+00, 8.80663740e-01, 4.03679938e-01, 2.09591417e+00,
1.85304845e+00, 2.91188964e-01, 5.12366939e-01, 3.24752213e-01,
2.78952562e+00, 3.78252223e+00, 1.31299937e+01, 2.78085247e+00,
3.00091509e+00, 2.15540418e+00, 2.35845002e-01, 1.82554422e+00,
1.05207853e+00, 2.39851270e+00, 2.19625654e+00, 4.67886389e-01,
2.86541176e-01, 1.87607818e+00, 2.89026247e+00, 8.87386319e-01,
3.25292148e-01, 7.93867240e+00, 1.92295783e+00, 7.73531463e-01,
5.53388021e+00, 3.64054642e+00, 4.35903535e+00, 1.21702612e+00,
6.96780692e-01, 4.83404714e+00, 3.93667319e-01, 6.29749627e+00,
4.82216169e+00, 9.47206705e-01, 7.07322972e+00, 2.45807444e+00,
6.67991687e+00, 1.03930488e+00, 7.45016733e-01, 1.44489833e-01,
9.07492902e-01, 3.10716761e-01, 3.37096967e+00, 8.52682185e+00,
1.87715379e+00, 3.07835654e-01, 3.75481047e+00, 2.66790030e-01,
3.40297905e+00, 8.71672332e+00, 2.48761473e+00, 1.04575345e+00,
6.55418031e-01, 3.12385618e+00, 6.49171952e-01, 1.15273848e+01,
...
5.23458214e+00, 1.64117381e+00, 6.43493299e+00, 4.64649909e+00,
1.41547355e+00, 1.53533582e+00, 2.49793506e+00, 1.47650864e+00,
8.32081966e-01, 1.86116736e-01, 9.99245408e-01, 2.64780244e+00,
4.93433855e+00, 2.88708399e+00, 3.27053715e+00, 2.32859190e+00,
1.40732994e-01, 6.78645507e+00, 2.05091606e+00, 6.84319646e-01,
6.42276678e-01, 9.16461450e-01, 3.46493486e+00, 7.40550609e-01,
1.72902183e-01, 1.69837505e-01, 1.85849404e+00, 1.38512202e+01,
1.86942042e+00, 2.89652214e+00, 3.46267694e+00, 1.09125152e+00,
1.71311842e+00, 3.78828666e+00, 1.59487797e+00, 1.15965499e+00,
1.54874415e+00, 2.69011248e+00, 1.89135307e+00, 5.98093669e-02,
7.11119821e-01, 1.30692538e+00, 1.31616327e+01, 1.42126725e+00,
3.42300016e+00, 7.44146966e-01, 1.54873178e+00, 5.67836883e+00,
1.45944524e+00, 8.20717644e-01, 1.52246851e+00, 6.16785823e-01,
1.84548502e-02, 1.24931301e+00, 5.01474371e-01, 1.86147926e+00,
2.05124956e-02, 1.19897894e-01, 2.84298015e+00, 3.60401667e+00,
2.01339853e+00, 2.81876592e+00, 8.65746182e-01, 4.66898027e+00,
7.61674040e-01, 9.69722935e-01, 5.48541819e-01, 2.75059593e-01,
9.18326309e-01, 1.85231164e+00, 3.65144976e+00, 1.90410019e+00,
2.24107197e+00, 2.09648911e-01, 3.00254130e+00, 8.51863134e+00,
1.68270601e+00, 2.21979467e+00, 4.23808203e-01, 8.25105862e-01])
* sd_def_log__
(sample)
float64
-0.2662 0.2411 ... 1.402 -1.981
array([-2.66231231e-01, 2.41119324e-01, 6.07108094e-01, 5.64593030e-02,
3.51540828e-01, -5.04961233e+00, 2.97280561e-01, 2.53873110e+00,
4.20778034e-01, 1.84541139e+00, 8.26024991e-01, 2.32134298e+00,
1.15497265e+00, 9.93660172e-01, -1.35981048e-01, 6.16021151e-01,
1.20456534e+00, 2.83946191e-01, 1.67734704e+00, 1.27547423e-01,
7.46826568e-01, 7.36062294e-01, 1.51968613e+00, 1.33612222e+00,
1.16072406e+00, -3.98893588e-01, 1.44630386e+00, -5.97493601e-01,
1.95642877e+00, 1.55002295e+00, -2.41361364e-01, 1.65736569e+00,
1.61825254e+00, 1.50444497e+00, 1.25541358e+00, -3.87508279e-01,
1.26301072e+00, -1.95149966e-01, 1.52209056e+00, -1.10651613e+00,
2.18051733e-02, 1.83339203e+00, 6.69266660e-01, -1.41414289e+00,
7.61567247e-01, 7.49779831e-01, -1.27034308e-01, 1.42065008e+00,
-1.66721865e-01, -4.24928077e-01, 1.33791153e+00, 8.76750962e-01,
-5.18369966e-01, 1.07038856e+00, 1.33908784e+00, -6.08352480e-01,
1.57575265e+00, 1.81130566e+00, 1.41646042e+00, 1.70374602e-01,
2.13673598e-01, 4.30167287e-01, 1.27379847e+00, -5.36166845e-01,
1.97959270e+00, 1.40337922e+00, 4.63782701e-02, 8.30371526e-01,
9.06307969e-01, -1.58000461e-01, 4.01786482e-01, 3.15251272e+00,
5.52354230e-02, 5.24700523e-01, -1.07017295e+00, 1.39674161e+00,
-1.90587750e-01, 2.22146333e-01, 2.46767286e-01, 1.63627337e+00,
...
7.78045276e-01, -1.61508282e+00, -1.61655937e+00, 2.76984847e+00,
-1.01857229e-01, 7.50422943e-01, 2.05311343e+00, 7.99606000e-01,
-1.27018850e+00, -7.49870969e-01, 7.31181245e-01, 1.35752001e+00,
-4.62305638e-01, 1.80570530e+00, 1.55297566e-01, -1.95332198e-01,
1.73276279e+00, 1.51341085e+00, -4.22262810e-01, 8.57997867e-01,
3.94448852e-01, -4.39586165e-01, 1.74059531e+00, -9.95595809e-01,
-4.02826107e-03, 1.49938723e+00, 5.57146127e-01, 1.18885546e+00,
-5.27957373e-01, -1.91631575e-01, -1.37901706e+00, 1.42880775e-01,
-9.79126559e-01, -1.33741180e+00, 8.89511781e-01, 4.72173933e-01,
-8.57153608e-01, 2.08887725e+00, 1.69927100e+00, -2.47767954e-01,
-6.09375628e-01, 1.28447570e+00, 4.60243712e-01, 8.57140721e-01,
1.22386257e+00, 5.02025026e-02, -2.87859148e+00, 4.28232918e-02,
7.34039875e-01, 4.35383558e-01, -1.07594318e-01, 7.08201223e-01,
2.03105658e+00, 1.15770335e+00, -6.35784008e-01, 4.00959218e-01,
2.18109044e+00, 1.16884472e+00, -1.63224820e-01, -2.19155836e+00,
1.77940047e-01, 1.11544934e+00, -3.00428740e+00, -2.09604091e+00,
4.54487067e-01, 8.64009250e-01, -4.53459572e+00, 1.21431717e+00,
1.62915471e-01, 1.79827228e+00, -7.64765246e-02, 1.18014037e+00,
2.63814339e-01, 1.43945894e+00, 6.47290009e-03, 5.41726411e-02,
1.55715034e-01, 1.36651097e+00, 1.40193295e+00, -1.98080016e+00])
* home
(sample)
float64
-1.511 -0.001582 ... 0.2651
array([-1.51103822e+00, -1.58214715e-03, 1.74966138e+00, -1.14218786e+00,
3.81898388e-01, -1.42548094e+00, -3.78515613e-01, -8.67706658e-01,
-1.49108592e+00, 6.69863440e-01, 7.18575004e-01, 1.67115119e-01,
1.01793507e+00, 4.56157256e-02, -3.53777451e-01, -3.13412641e-01,
-2.07445754e-01, 1.33937041e+00, -5.55557498e-01, -1.26942445e+00,
1.33042195e+00, 7.16229880e-01, -7.26613372e-01, -5.00091223e-01,
-8.08593352e-01, -3.85792178e-01, 3.75446063e-01, 7.02900418e-01,
-1.89883841e-01, 8.88231522e-01, -1.39723484e+00, -7.94858159e-01,
-8.11636986e-01, 1.40021129e+00, 8.65872986e-01, -1.10964499e+00,
-1.30717196e-02, -2.48566130e-01, 1.39654950e-01, 1.91358709e+00,
2.72186948e-02, -2.85800183e-01, 1.20540344e+00, -1.85657767e+00,
2.07564518e+00, 1.26404709e+00, -1.15796968e+00, 1.95711795e+00,
2.66195806e-01, 7.43581431e-01, 1.43903599e+00, 7.92908469e-01,
4.67722568e-01, -7.52708578e-01, -7.45480497e-01, -3.13432454e-01,
-6.21922350e-01, 1.87944358e-01, 3.19774512e-01, -8.63301654e-01,
5.85490440e-01, 1.60331092e+00, 3.11086588e-01, -5.27808317e-02,
6.66007300e-01, -4.73389677e-01, 1.64437065e+00, 6.17839934e-01,
-8.47328103e-01, 7.12503102e-02, 1.74567184e+00, -2.27108890e-01,
-1.09957354e+00, -5.25344683e-01, -1.58447967e-01, -1.08408818e+00,
2.14631171e-01, -8.42154181e-01, 6.78274528e-01, 4.11063532e-01,
...
-1.08660806e+00, 4.61177588e-01, -4.28756208e-01, -1.38754892e+00,
1.90919449e+00, 8.42244972e-01, -4.81839575e-01, 1.37301560e+00,
5.68220507e-01, 3.44242575e-01, 8.00759296e-01, 1.05794036e-01,
-1.07620511e-02, 2.25943342e+00, 2.21739964e-01, -1.19290592e+00,
-1.55893018e+00, 4.59921482e-01, -8.18546161e-02, 6.56359815e-01,
2.91132970e-01, -2.31882627e+00, 1.69658237e+00, 1.70896535e+00,
-1.79917424e+00, -5.03186531e-01, -8.38677733e-01, 6.44888328e-01,
-5.25427636e-01, 8.40319402e-01, -1.68682793e-01, -1.41478295e+00,
-3.62447671e-01, 3.39351005e-01, 1.33366396e-01, 7.72595908e-01,
8.19799692e-01, 1.41221655e-01, 1.30474469e-01, -2.47950978e-01,
4.39510891e-01, -7.32076216e-01, 9.37126105e-01, -2.21902518e-01,
3.29430424e-01, 1.01406670e-01, 2.68919567e-01, 5.26758179e-01,
-7.46006740e-02, -3.18760027e-01, -2.40427060e+00, -1.11396230e-01,
1.99851284e+00, 1.06005097e+00, 3.72957440e-01, 1.29944729e+00,
3.82607115e-01, 7.52244343e-01, -5.71013589e-01, 8.52295867e-01,
9.17482382e-01, -1.52612439e+00, 9.13059441e-02, -1.61838063e+00,
9.95787895e-01, 1.21960955e+00, -2.34522054e-01, 1.34338622e+00,
3.68672574e-01, -2.78725987e-01, 3.35852104e-01, 1.66393907e-01,
-5.94371567e-01, 1.90500954e-01, 3.29214750e-01, -6.20115650e-01,
-1.54678725e+00, -3.35765943e-01, -2.41596870e-02, 2.65064498e-01])
* atts
(team, sample)
float64
-4.667 0.03653 ... -0.1798 -0.8365
array([[-4.66741437, 0.03652762, -0.13152907, ..., -3.54213314,
0.29472456, -0.03955957],
[ 2.14452375, 0.11035491, -4.91233026, ..., -0.33887069,
-0.03033576, 0.72036471],
[ 5.40328906, 0.08616187, -5.30302934, ..., 2.16444913,
0.15820221, 1.27802213],
[-2.18444831, -0.15350078, 3.9337461 , ..., 2.61165413,
-0.0727319 , -0.85211427],
[ 5.12954981, -0.13999449, 0.34478081, ..., -0.56890065,
-0.17007817, -0.27016301],
[-5.82549994, 0.06045088, 6.06836176, ..., -0.32619877,
-0.17978094, -0.83654999]])
* sd_def
(sample)
float64
0.7663 1.273 1.835 ... 4.063 0.138
array([7.66261923e-01, 1.27267289e+00, 1.83511673e+00, 1.05808355e+00,
1.42125577e+00, 6.41181861e-03, 1.34619294e+00, 1.26635919e+01,
1.52314615e+00, 6.33070364e+00, 2.28422087e+00, 1.01893492e+01,
3.17393660e+00, 2.70110290e+00, 8.72859175e-01, 1.85154634e+00,
3.33530904e+00, 1.32836145e+00, 5.35134022e+00, 1.13603874e+00,
2.11029251e+00, 2.08769856e+00, 4.57079036e+00, 3.80426276e+00,
3.19224382e+00, 6.71062107e-01, 4.24738655e+00, 5.50188902e-01,
7.07401894e+00, 4.71157830e+00, 7.85557703e-01, 5.24547441e+00,
5.04426797e+00, 4.50165436e+00, 3.50928944e+00, 6.78746015e-01,
3.53605152e+00, 8.22711270e-01, 4.58179369e+00, 3.30709103e-01,
1.02204464e+00, 6.25506812e+00, 1.95280473e+00, 2.43133916e-01,
2.14163005e+00, 2.11653397e+00, 8.80703457e-01, 4.13981079e+00,
8.46435002e-01, 6.53816808e-01, 3.81107586e+00, 2.40307931e+00,
5.95490427e-01, 2.91651253e+00, 3.81556152e+00, 5.44246788e-01,
4.83437886e+00, 6.11843079e+00, 4.12250267e+00, 1.18574895e+00,
1.23821843e+00, 1.53751471e+00, 3.57440406e+00, 5.84986304e-01,
7.23979360e+00, 4.06892655e+00, 1.04747056e+00, 2.29417093e+00,
2.47516725e+00, 8.53849388e-01, 1.49449220e+00, 2.33947752e+01,
1.05678938e+00, 1.68995267e+00, 3.42949200e-01, 4.04200805e+00,
8.26473232e-01, 1.24875410e+00, 1.27988123e+00, 5.13599386e+00,
...
2.17721225e+00, 1.98874198e-01, 1.98580768e-01, 1.59562159e+01,
9.03158488e-01, 2.11789558e+00, 7.79212365e+00, 2.22466424e+00,
2.80778689e-01, 4.72427506e-01, 2.07753324e+00, 3.88654277e+00,
6.29829811e-01, 6.08426118e+00, 1.16800547e+00, 8.22561360e-01,
5.65625940e+00, 4.54219713e+00, 6.55561729e-01, 2.35843406e+00,
1.48356630e+00, 6.44303001e-01, 5.70073611e+00, 3.69503226e-01,
9.95979841e-01, 4.47894369e+00, 1.74568343e+00, 3.28332117e+00,
5.89808499e-01, 8.25610988e-01, 2.51825962e-01, 1.15359226e+00,
3.75639054e-01, 2.62524256e-01, 2.43394106e+00, 1.60347626e+00,
4.24368283e-01, 8.07584290e+00, 5.46995833e+00, 7.80541043e-01,
5.43690228e-01, 3.61277327e+00, 1.58446009e+00, 2.35641341e+00,
3.40029629e+00, 1.05148400e+00, 5.62138855e-02, 1.04375344e+00,
2.08348063e+00, 1.54555576e+00, 8.97991821e-01, 2.03033585e+00,
7.62213547e+00, 3.18261553e+00, 5.29520177e-01, 1.49325637e+00,
8.85595789e+00, 3.21827248e+00, 8.49400205e-01, 1.11742478e-01,
1.19475369e+00, 3.05093878e+00, 4.95740684e-02, 1.22942205e-01,
1.57536512e+00, 2.37265421e+00, 1.07312448e-02, 3.36799351e+00,
1.17693720e+00, 6.03920442e+00, 9.26374661e-01, 3.25483104e+00,
1.30188646e+00, 4.21841279e+00, 1.00649389e+00, 1.05566684e+00,
1.16849318e+00, 3.92164406e+00, 4.06304603e+00, 1.37958804e-01])
* home_points
(match, sample)
int64
0 16 0 3 66 16 ... 0 0 5 50 71 13
array([[ 0, 16, 0, ..., 2, 9, 2],
[ 47, 27, 0, ..., 4, 53, 9],
[ 11899, 51, 0, ..., 430931, 3919, 12],
...,
[ 5, 15, 1, ..., 580, 6, 1],
[ 122, 103, 18, ..., 15, 1, 12],
[ 1280, 45, 0, ..., 50, 71, 13]])
* defs
(team, sample)
float64
-0.2517 0.8887 ... -0.1544 -0.06586
array([[-2.51655799e-01, 8.88674435e-01, 4.05352303e+00, ...,
-1.12686054e+00, -4.18383656e+00, 2.15148515e-01],
[ 3.82254537e-01, -8.87288872e-01, -7.24553268e-01, ...,
-3.64484468e+00, 7.96385626e-01, -2.15637656e-01],
[ 1.06023772e-01, -2.43138065e-02, 1.92514295e+00, ...,
5.17840626e-01, 1.67572781e+00, -2.13010953e-02],
[ 1.03660308e+00, 6.11212560e-01, 1.01370446e+00, ...,
6.78266192e+00, 3.98464845e+00, -1.34404914e-03],
[-7.27870843e-02, -8.04072115e-01, -5.98201528e+00, ...,
-2.59951704e-01, -2.11849683e+00, 8.89961668e-02],
[-1.20043851e+00, 2.15787799e-01, -2.85801894e-01, ...,
-2.26884563e+00, -1.54428485e-01, -6.58618818e-02]]) - Indexes: (3)
* PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match'))
* PandasMultiIndex
PandasIndex(MultiIndex([(0, 0),
(0, 1),
(0, 2),
(0, 3),
(0, 4),
(0, 5),
(0, 6),
(0, 7),
(0, 8),
(0, 9),
...
(0, 490),
(0, 491),
(0, 492),
(0, 493),
(0, 494),
(0, 495),
(0, 496),
(0, 497),
(0, 498),
(0, 499)],
name='sample', length=500)) - Attributes: (3)
created_at :
2019-07-12T20:31:53.573731
inference_library :
pymc3
inference_library_version :
3.7
- Dimensions:
- observed_data
<xarray.Dataset>
Dimensions: (match: 60)
Coordinates:- match (match) object 'Wales Italy' ... 'Ireland England'
Data variables:
home_points (match) float64 ...
away_points (match) float64 ...
Attributes:
created_at: 2019-07-12T20:31:53.581293
inference_library: pymc3
inference_library_version: 3.7- Dimensions:
* match: 60 - Coordinates: (1)
* match
(match)
object
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype=object) - Data variables: (2)
* home_points
(match)
float64
...
[60 values with dtype=float64]
* away_points
(match)
float64
...
[60 values with dtype=float64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (3)
created_at :
2019-07-12T20:31:53.581293
inference_library :
pymc3
inference_library_version :
3.7
- Dimensions:
- match (match) object 'Wales Italy' ... 'Ireland England'
We can also take the example of custom InferenceData object and perform stacking. We first check the original object:
import numpy as np datadict = { "a": np.random.randn(100), "b": np.random.randn(1, 100, 10), "c": np.random.randn(1, 100, 3, 4), } coords = { "c1": np.arange(3), "c99": np.arange(4), "b1": np.arange(10), } dims = {"c": ["c1", "c99"], "b": ["b1"]} idata = az.from_dict( posterior=datadict, posterior_predictive=datadict, coords=coords, dims=dims ) idata
- posterior
<xarray.Dataset>
Dimensions: (chain: 1, draw: 100, b1: 10, c1: 3, c99: 4)
Coordinates:- chain (chain) int64 0
- draw (draw) int64 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 97 98 99
- b1 (b1) int64 0 1 2 3 4 5 6 7 8 9
- c1 (c1) int64 0 1 2
- c99 (c99) int64 0 1 2 3
Data variables:
a (chain, draw) float64 -0.5433 -1.518 -0.6429 ... 0.356 0.4102
b (chain, draw, b1) float64 0.7365 0.1042 -0.7594 ... 0.5185 -0.6071
c (chain, draw, c1, c99) float64 -0.5052 0.2661 ... -0.6676 1.214
Attributes:
created_at: 2022-11-16T10:14:46.012819
arviz_version: 0.14.0- Dimensions:
* chain: 1
* draw: 100
* b1: 10
* c1: 3
* c99: 4 - Coordinates: (5)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
* b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
* c1
(c1)
int64
0 1 2
* c99
(c99)
int64
0 1 2 3 - Data variables: (3)
* a
(chain, draw)
float64
-0.5433 -1.518 ... 0.356 0.4102
array([[-0.54333413, -1.51798407, -0.64292427, -1.0851048 , -1.54712539,
-0.39821563, 1.30374895, -1.28517056, -2.48747773, -1.47198637,
-1.45286165, -1.12343691, 0.08416575, 0.93665302, 0.56213396,
1.2066257 , 0.58083777, 1.19481677, -0.26397195, 1.24755189,
-0.34266886, 2.24710006, 1.23760442, -2.03851986, -1.21239011,
0.29706189, -1.92164858, 1.92432325, 1.16300559, -1.57878044,
0.96976687, 1.63137064, -0.07462624, -0.18631829, 2.46308122,
2.15883181, -0.3894327 , 0.54539741, -0.00851225, -1.05238594,
0.54122706, 0.27256605, 1.64453626, -1.3660852 , 0.2506842 ,
-0.82779612, 1.4535256 , -0.71786432, 0.93365798, 1.07424023,
-1.32587032, -0.17777786, 0.05056765, 0.34946023, 1.50084862,
0.53783259, -0.66036256, 0.31398561, 0.29419166, -0.24714188,
0.14201141, 0.27191859, -1.27853131, 1.07442233, 1.15100221,
0.51163548, 1.08913867, 1.64641418, -0.63899351, 1.44603478,
-0.32755361, -0.07748676, -0.33632953, 0.37698774, -0.55696196,
-0.08223404, -1.71728786, -1.32522467, 1.57485372, 0.81259963,
-0.18710204, 0.08702355, 0.80609865, -1.2335036 , 0.41687504,
1.82333408, 0.18546491, -0.31354066, 0.1632812 , -2.10931758,
0.9317863 , 1.23626849, -0.84301166, 1.26821958, -0.8037177 ,
0.03608824, 1.01842965, 0.00414185, 0.35600637, 0.4101944 ]])
* b
(chain, draw, b1)
float64
0.7365 0.1042 ... 0.5185 -0.6071
array([[[ 7.36482005e-01, 1.04233375e-01, -7.59364711e-01,
-9.18288719e-01, 3.83236904e-01, 8.34190651e-01,
1.76988096e+00, 1.76458752e+00, 7.18144128e-01,
-1.05766784e+00],
[-3.94752934e-01, -5.08181190e-01, 1.35471216e-01,
-1.29525676e-01, -5.40745024e-01, 2.75442950e-01,
-8.44774075e-01, -1.40998109e+00, 4.11209200e-01,
-1.36400790e+00],
[ 1.36444141e+00, 4.81131708e-01, -6.07351835e-02,
-1.23375692e-01, 1.27177909e+00, -1.86791263e+00,
1.06049508e+00, 1.25359747e+00, -1.45588122e+00,
-7.46998531e-01],
[ 2.87312685e-01, 2.87300255e-01, -1.81009547e+00,
2.71829308e-01, 2.08981273e+00, -1.06368605e+00,
-6.35590799e-01, -4.42947961e-01, -2.16390303e-01,
1.15744805e+00],
[ 8.38030855e-01, 9.05788411e-01, -1.70168603e-01,
4.42832550e-01, -4.50982305e-01, -1.05749167e-01,
-9.04463303e-01, -1.12647676e-01, 3.56204815e-01,
9.43393218e-01],
...
[ 6.23190473e-01, -7.32473868e-01, 4.57104028e-01,
-1.87972972e+00, -2.92042951e-01, 2.16390412e+00,
3.18433679e-01, -7.26262677e-01, 2.20551229e-01,
8.90658740e-01],
[-1.65932012e-01, -4.40919334e-02, 1.32834102e+00,
1.58718953e+00, -4.22238091e-01, 6.41002351e-01,
9.71716553e-01, 2.08217333e+00, -9.13751200e-01,
1.42426109e+00],
[ 5.60795586e-01, 4.80651934e-01, 6.67860857e-01,
4.15728900e-01, 1.14891736e+00, 1.88509482e+00,
-6.42442763e-02, -1.08059777e+00, -1.76411602e-02,
-4.82983285e-01],
[-1.72030276e+00, 8.73805690e-01, -8.19069633e-01,
8.99149471e-01, 5.12431594e-01, 1.18207158e-01,
7.08151764e-01, 1.55974711e-01, -2.13951094e-01,
2.46265996e-01],
[-2.55089158e+00, 1.25601765e+00, 4.62435416e-01,
2.13703316e-02, -5.01456593e-01, 3.42289652e-02,
-1.07862695e+00, -2.26112332e-01, 5.18534031e-01,
-6.07100810e-01]]])
* c
(chain, draw, c1, c99)
float64
-0.5052 0.2661 ... -0.6676 1.214
array([[[[-0.50517279, 0.26614884, -1.65146444, 0.74298434],
[-1.2031745 , -0.49153895, 1.83118754, 0.35817119],
[-0.00963703, 0.23630007, -0.2710814 , -0.3805425 ]],
[[-0.09914482, -0.65050583, -0.37593526, 0.51775334],
[ 0.56257644, -0.81246158, 0.05427547, 1.07647783],
[ 0.30586673, 1.191483 , 0.26244839, -0.50701715]],
[[ 0.07011478, -0.67404789, -0.65773377, 0.93212557],
[ 0.88059232, 0.26845425, -0.40832009, -0.91110488],
[-0.19065115, -1.21332532, -1.9370579 , 0.43984602]],
...,
[[-0.74272536, 0.51348611, 1.78787021, 0.02236638],
[ 0.26545384, 1.65481148, -1.54835553, 0.54628853],
[-0.4327135 , -0.11214751, 1.57337754, 1.95024628]],
[[-0.8175341 , -1.69829433, -0.66615676, -0.36930122],
[ 0.11569819, -0.36504529, 0.20519934, 0.40177127],
[ 0.30112749, -0.98482306, 0.52006695, 0.89447994]],
[[-1.6209151 , 0.21941275, -0.34492344, 1.30887069],
[-1.98852016, 0.81857957, 0.2151404 , 0.61299235],
[ 1.69617321, 0.93188967, -0.667589 , 1.2141002 ]]]]) - Indexes: (5)
* PandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
dtype='int64', name='draw'))
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
* PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='c1'))
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='c99')) - Attributes: (2)
created_at :
2022-11-16T10:14:46.012819
arviz_version :
0.14.0
- Dimensions:
- posterior_predictive
<xarray.Dataset>
Dimensions: (chain: 1, draw: 100, b1: 10, c1: 3, c99: 4)
Coordinates:- chain (chain) int64 0
- draw (draw) int64 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 97 98 99
- b1 (b1) int64 0 1 2 3 4 5 6 7 8 9
- c1 (c1) int64 0 1 2
- c99 (c99) int64 0 1 2 3
Data variables:
a (chain, draw) float64 -0.5433 -1.518 -0.6429 ... 0.356 0.4102
b (chain, draw, b1) float64 0.7365 0.1042 -0.7594 ... 0.5185 -0.6071
c (chain, draw, c1, c99) float64 -0.5052 0.2661 ... -0.6676 1.214
Attributes:
created_at: 2022-11-16T10:14:46.016833
arviz_version: 0.14.0- Dimensions:
* chain: 1
* draw: 100
* b1: 10
* c1: 3
* c99: 4 - Coordinates: (5)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
* b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
* c1
(c1)
int64
0 1 2
* c99
(c99)
int64
0 1 2 3 - Data variables: (3)
* a
(chain, draw)
float64
-0.5433 -1.518 ... 0.356 0.4102
array([[-0.54333413, -1.51798407, -0.64292427, -1.0851048 , -1.54712539,
-0.39821563, 1.30374895, -1.28517056, -2.48747773, -1.47198637,
-1.45286165, -1.12343691, 0.08416575, 0.93665302, 0.56213396,
1.2066257 , 0.58083777, 1.19481677, -0.26397195, 1.24755189,
-0.34266886, 2.24710006, 1.23760442, -2.03851986, -1.21239011,
0.29706189, -1.92164858, 1.92432325, 1.16300559, -1.57878044,
0.96976687, 1.63137064, -0.07462624, -0.18631829, 2.46308122,
2.15883181, -0.3894327 , 0.54539741, -0.00851225, -1.05238594,
0.54122706, 0.27256605, 1.64453626, -1.3660852 , 0.2506842 ,
-0.82779612, 1.4535256 , -0.71786432, 0.93365798, 1.07424023,
-1.32587032, -0.17777786, 0.05056765, 0.34946023, 1.50084862,
0.53783259, -0.66036256, 0.31398561, 0.29419166, -0.24714188,
0.14201141, 0.27191859, -1.27853131, 1.07442233, 1.15100221,
0.51163548, 1.08913867, 1.64641418, -0.63899351, 1.44603478,
-0.32755361, -0.07748676, -0.33632953, 0.37698774, -0.55696196,
-0.08223404, -1.71728786, -1.32522467, 1.57485372, 0.81259963,
-0.18710204, 0.08702355, 0.80609865, -1.2335036 , 0.41687504,
1.82333408, 0.18546491, -0.31354066, 0.1632812 , -2.10931758,
0.9317863 , 1.23626849, -0.84301166, 1.26821958, -0.8037177 ,
0.03608824, 1.01842965, 0.00414185, 0.35600637, 0.4101944 ]])
* b
(chain, draw, b1)
float64
0.7365 0.1042 ... 0.5185 -0.6071
array([[[ 7.36482005e-01, 1.04233375e-01, -7.59364711e-01,
-9.18288719e-01, 3.83236904e-01, 8.34190651e-01,
1.76988096e+00, 1.76458752e+00, 7.18144128e-01,
-1.05766784e+00],
[-3.94752934e-01, -5.08181190e-01, 1.35471216e-01,
-1.29525676e-01, -5.40745024e-01, 2.75442950e-01,
-8.44774075e-01, -1.40998109e+00, 4.11209200e-01,
-1.36400790e+00],
[ 1.36444141e+00, 4.81131708e-01, -6.07351835e-02,
-1.23375692e-01, 1.27177909e+00, -1.86791263e+00,
1.06049508e+00, 1.25359747e+00, -1.45588122e+00,
-7.46998531e-01],
[ 2.87312685e-01, 2.87300255e-01, -1.81009547e+00,
2.71829308e-01, 2.08981273e+00, -1.06368605e+00,
-6.35590799e-01, -4.42947961e-01, -2.16390303e-01,
1.15744805e+00],
[ 8.38030855e-01, 9.05788411e-01, -1.70168603e-01,
4.42832550e-01, -4.50982305e-01, -1.05749167e-01,
-9.04463303e-01, -1.12647676e-01, 3.56204815e-01,
9.43393218e-01],
...
[ 6.23190473e-01, -7.32473868e-01, 4.57104028e-01,
-1.87972972e+00, -2.92042951e-01, 2.16390412e+00,
3.18433679e-01, -7.26262677e-01, 2.20551229e-01,
8.90658740e-01],
[-1.65932012e-01, -4.40919334e-02, 1.32834102e+00,
1.58718953e+00, -4.22238091e-01, 6.41002351e-01,
9.71716553e-01, 2.08217333e+00, -9.13751200e-01,
1.42426109e+00],
[ 5.60795586e-01, 4.80651934e-01, 6.67860857e-01,
4.15728900e-01, 1.14891736e+00, 1.88509482e+00,
-6.42442763e-02, -1.08059777e+00, -1.76411602e-02,
-4.82983285e-01],
[-1.72030276e+00, 8.73805690e-01, -8.19069633e-01,
8.99149471e-01, 5.12431594e-01, 1.18207158e-01,
7.08151764e-01, 1.55974711e-01, -2.13951094e-01,
2.46265996e-01],
[-2.55089158e+00, 1.25601765e+00, 4.62435416e-01,
2.13703316e-02, -5.01456593e-01, 3.42289652e-02,
-1.07862695e+00, -2.26112332e-01, 5.18534031e-01,
-6.07100810e-01]]])
* c
(chain, draw, c1, c99)
float64
-0.5052 0.2661 ... -0.6676 1.214
array([[[[-0.50517279, 0.26614884, -1.65146444, 0.74298434],
[-1.2031745 , -0.49153895, 1.83118754, 0.35817119],
[-0.00963703, 0.23630007, -0.2710814 , -0.3805425 ]],
[[-0.09914482, -0.65050583, -0.37593526, 0.51775334],
[ 0.56257644, -0.81246158, 0.05427547, 1.07647783],
[ 0.30586673, 1.191483 , 0.26244839, -0.50701715]],
[[ 0.07011478, -0.67404789, -0.65773377, 0.93212557],
[ 0.88059232, 0.26845425, -0.40832009, -0.91110488],
[-0.19065115, -1.21332532, -1.9370579 , 0.43984602]],
...,
[[-0.74272536, 0.51348611, 1.78787021, 0.02236638],
[ 0.26545384, 1.65481148, -1.54835553, 0.54628853],
[-0.4327135 , -0.11214751, 1.57337754, 1.95024628]],
[[-0.8175341 , -1.69829433, -0.66615676, -0.36930122],
[ 0.11569819, -0.36504529, 0.20519934, 0.40177127],
[ 0.30112749, -0.98482306, 0.52006695, 0.89447994]],
[[-1.6209151 , 0.21941275, -0.34492344, 1.30887069],
[-1.98852016, 0.81857957, 0.2151404 , 0.61299235],
[ 1.69617321, 0.93188967, -0.667589 , 1.2141002 ]]]]) - Indexes: (5)
* PandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
dtype='int64', name='draw'))
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
* PandasIndex
PandasIndex(Int64Index([0, 1, 2], dtype='int64', name='c1'))
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3], dtype='int64', name='c99')) - Attributes: (2)
created_at :
2022-11-16T10:14:46.016833
arviz_version :
0.14.0
- Dimensions:
In order to stack two dimensions c1
and c99
to z
, we can use:
idata.stack(z=["c1", "c99"], inplace=True) idata
- posterior
<xarray.Dataset>
Dimensions: (chain: 1, draw: 100, b1: 10, z: 12)
Coordinates:- chain (chain) int64 0
- draw (draw) int64 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 97 98 99
- b1 (b1) int64 0 1 2 3 4 5 6 7 8 9
- z (z) object MultiIndex
- c1 (z) int64 0 0 0 0 1 1 1 1 2 2 2 2
- c99 (z) int64 0 1 2 3 0 1 2 3 0 1 2 3
Data variables:
a (chain, draw) float64 -0.5433 -1.518 -0.6429 ... 0.356 0.4102
b (chain, draw, b1) float64 0.7365 0.1042 -0.7594 ... 0.5185 -0.6071
c (chain, draw, z) float64 -0.5052 0.2661 -1.651 ... -0.6676 1.214
Attributes:
created_at: 2022-11-16T10:14:46.012819
arviz_version: 0.14.0- Dimensions:
* chain: 1
* draw: 100
* b1: 10
* z: 12 - Coordinates: (6)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
* b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
* z
(z)
object
MultiIndex
array([(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (2, 3)], dtype=object)
* c1
(z)
int64
0 0 0 0 1 1 1 1 2 2 2 2
array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2])
* c99
(z)
int64
0 1 2 3 0 1 2 3 0 1 2 3
array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]) - Data variables: (3)
* a
(chain, draw)
float64
-0.5433 -1.518 ... 0.356 0.4102
array([[-0.54333413, -1.51798407, -0.64292427, -1.0851048 , -1.54712539,
-0.39821563, 1.30374895, -1.28517056, -2.48747773, -1.47198637,
-1.45286165, -1.12343691, 0.08416575, 0.93665302, 0.56213396,
1.2066257 , 0.58083777, 1.19481677, -0.26397195, 1.24755189,
-0.34266886, 2.24710006, 1.23760442, -2.03851986, -1.21239011,
0.29706189, -1.92164858, 1.92432325, 1.16300559, -1.57878044,
0.96976687, 1.63137064, -0.07462624, -0.18631829, 2.46308122,
2.15883181, -0.3894327 , 0.54539741, -0.00851225, -1.05238594,
0.54122706, 0.27256605, 1.64453626, -1.3660852 , 0.2506842 ,
-0.82779612, 1.4535256 , -0.71786432, 0.93365798, 1.07424023,
-1.32587032, -0.17777786, 0.05056765, 0.34946023, 1.50084862,
0.53783259, -0.66036256, 0.31398561, 0.29419166, -0.24714188,
0.14201141, 0.27191859, -1.27853131, 1.07442233, 1.15100221,
0.51163548, 1.08913867, 1.64641418, -0.63899351, 1.44603478,
-0.32755361, -0.07748676, -0.33632953, 0.37698774, -0.55696196,
-0.08223404, -1.71728786, -1.32522467, 1.57485372, 0.81259963,
-0.18710204, 0.08702355, 0.80609865, -1.2335036 , 0.41687504,
1.82333408, 0.18546491, -0.31354066, 0.1632812 , -2.10931758,
0.9317863 , 1.23626849, -0.84301166, 1.26821958, -0.8037177 ,
0.03608824, 1.01842965, 0.00414185, 0.35600637, 0.4101944 ]])
* b
(chain, draw, b1)
float64
0.7365 0.1042 ... 0.5185 -0.6071
array([[[ 7.36482005e-01, 1.04233375e-01, -7.59364711e-01,
-9.18288719e-01, 3.83236904e-01, 8.34190651e-01,
1.76988096e+00, 1.76458752e+00, 7.18144128e-01,
-1.05766784e+00],
[-3.94752934e-01, -5.08181190e-01, 1.35471216e-01,
-1.29525676e-01, -5.40745024e-01, 2.75442950e-01,
-8.44774075e-01, -1.40998109e+00, 4.11209200e-01,
-1.36400790e+00],
[ 1.36444141e+00, 4.81131708e-01, -6.07351835e-02,
-1.23375692e-01, 1.27177909e+00, -1.86791263e+00,
1.06049508e+00, 1.25359747e+00, -1.45588122e+00,
-7.46998531e-01],
[ 2.87312685e-01, 2.87300255e-01, -1.81009547e+00,
2.71829308e-01, 2.08981273e+00, -1.06368605e+00,
-6.35590799e-01, -4.42947961e-01, -2.16390303e-01,
1.15744805e+00],
[ 8.38030855e-01, 9.05788411e-01, -1.70168603e-01,
4.42832550e-01, -4.50982305e-01, -1.05749167e-01,
-9.04463303e-01, -1.12647676e-01, 3.56204815e-01,
9.43393218e-01],
...
[ 6.23190473e-01, -7.32473868e-01, 4.57104028e-01,
-1.87972972e+00, -2.92042951e-01, 2.16390412e+00,
3.18433679e-01, -7.26262677e-01, 2.20551229e-01,
8.90658740e-01],
[-1.65932012e-01, -4.40919334e-02, 1.32834102e+00,
1.58718953e+00, -4.22238091e-01, 6.41002351e-01,
9.71716553e-01, 2.08217333e+00, -9.13751200e-01,
1.42426109e+00],
[ 5.60795586e-01, 4.80651934e-01, 6.67860857e-01,
4.15728900e-01, 1.14891736e+00, 1.88509482e+00,
-6.42442763e-02, -1.08059777e+00, -1.76411602e-02,
-4.82983285e-01],
[-1.72030276e+00, 8.73805690e-01, -8.19069633e-01,
8.99149471e-01, 5.12431594e-01, 1.18207158e-01,
7.08151764e-01, 1.55974711e-01, -2.13951094e-01,
2.46265996e-01],
[-2.55089158e+00, 1.25601765e+00, 4.62435416e-01,
2.13703316e-02, -5.01456593e-01, 3.42289652e-02,
-1.07862695e+00, -2.26112332e-01, 5.18534031e-01,
-6.07100810e-01]]])
* c
(chain, draw, z)
float64
-0.5052 0.2661 ... -0.6676 1.214
array([[[-0.50517279, 0.26614884, -1.65146444, ..., 0.23630007,
-0.2710814 , -0.3805425 ],
[-0.09914482, -0.65050583, -0.37593526, ..., 1.191483 ,
0.26244839, -0.50701715],
[ 0.07011478, -0.67404789, -0.65773377, ..., -1.21332532,
-1.9370579 , 0.43984602],
...,
[-0.74272536, 0.51348611, 1.78787021, ..., -0.11214751,
1.57337754, 1.95024628],
[-0.8175341 , -1.69829433, -0.66615676, ..., -0.98482306,
0.52006695, 0.89447994],
[-1.6209151 , 0.21941275, -0.34492344, ..., 0.93188967,
-0.667589 , 1.2141002 ]]]) - Indexes: (4)
* PandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
dtype='int64', name='draw'))
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
* PandasMultiIndex
PandasIndex(MultiIndex([(0, 0),
(0, 1),
(0, 2),
(0, 3),
(1, 0),
(1, 1),
(1, 2),
(1, 3),
(2, 0),
(2, 1),
(2, 2),
(2, 3)],
name='z')) - Attributes: (2)
created_at :
2022-11-16T10:14:46.012819
arviz_version :
0.14.0
- Dimensions:
- posterior_predictive
<xarray.Dataset>
Dimensions: (chain: 1, draw: 100, b1: 10, z: 12)
Coordinates:- chain (chain) int64 0
- draw (draw) int64 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 97 98 99
- b1 (b1) int64 0 1 2 3 4 5 6 7 8 9
- z (z) object MultiIndex
- c1 (z) int64 0 0 0 0 1 1 1 1 2 2 2 2
- c99 (z) int64 0 1 2 3 0 1 2 3 0 1 2 3
Data variables:
a (chain, draw) float64 -0.5433 -1.518 -0.6429 ... 0.356 0.4102
b (chain, draw, b1) float64 0.7365 0.1042 -0.7594 ... 0.5185 -0.6071
c (chain, draw, z) float64 -0.5052 0.2661 -1.651 ... -0.6676 1.214
Attributes:
created_at: 2022-11-16T10:14:46.016833
arviz_version: 0.14.0- Dimensions:
* chain: 1
* draw: 100
* b1: 10
* z: 12 - Coordinates: (6)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
* b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
* z
(z)
object
MultiIndex
array([(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (2, 3)], dtype=object)
* c1
(z)
int64
0 0 0 0 1 1 1 1 2 2 2 2
array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2])
* c99
(z)
int64
0 1 2 3 0 1 2 3 0 1 2 3
array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]) - Data variables: (3)
* a
(chain, draw)
float64
-0.5433 -1.518 ... 0.356 0.4102
array([[-0.54333413, -1.51798407, -0.64292427, -1.0851048 , -1.54712539,
-0.39821563, 1.30374895, -1.28517056, -2.48747773, -1.47198637,
-1.45286165, -1.12343691, 0.08416575, 0.93665302, 0.56213396,
1.2066257 , 0.58083777, 1.19481677, -0.26397195, 1.24755189,
-0.34266886, 2.24710006, 1.23760442, -2.03851986, -1.21239011,
0.29706189, -1.92164858, 1.92432325, 1.16300559, -1.57878044,
0.96976687, 1.63137064, -0.07462624, -0.18631829, 2.46308122,
2.15883181, -0.3894327 , 0.54539741, -0.00851225, -1.05238594,
0.54122706, 0.27256605, 1.64453626, -1.3660852 , 0.2506842 ,
-0.82779612, 1.4535256 , -0.71786432, 0.93365798, 1.07424023,
-1.32587032, -0.17777786, 0.05056765, 0.34946023, 1.50084862,
0.53783259, -0.66036256, 0.31398561, 0.29419166, -0.24714188,
0.14201141, 0.27191859, -1.27853131, 1.07442233, 1.15100221,
0.51163548, 1.08913867, 1.64641418, -0.63899351, 1.44603478,
-0.32755361, -0.07748676, -0.33632953, 0.37698774, -0.55696196,
-0.08223404, -1.71728786, -1.32522467, 1.57485372, 0.81259963,
-0.18710204, 0.08702355, 0.80609865, -1.2335036 , 0.41687504,
1.82333408, 0.18546491, -0.31354066, 0.1632812 , -2.10931758,
0.9317863 , 1.23626849, -0.84301166, 1.26821958, -0.8037177 ,
0.03608824, 1.01842965, 0.00414185, 0.35600637, 0.4101944 ]])
* b
(chain, draw, b1)
float64
0.7365 0.1042 ... 0.5185 -0.6071
array([[[ 7.36482005e-01, 1.04233375e-01, -7.59364711e-01,
-9.18288719e-01, 3.83236904e-01, 8.34190651e-01,
1.76988096e+00, 1.76458752e+00, 7.18144128e-01,
-1.05766784e+00],
[-3.94752934e-01, -5.08181190e-01, 1.35471216e-01,
-1.29525676e-01, -5.40745024e-01, 2.75442950e-01,
-8.44774075e-01, -1.40998109e+00, 4.11209200e-01,
-1.36400790e+00],
[ 1.36444141e+00, 4.81131708e-01, -6.07351835e-02,
-1.23375692e-01, 1.27177909e+00, -1.86791263e+00,
1.06049508e+00, 1.25359747e+00, -1.45588122e+00,
-7.46998531e-01],
[ 2.87312685e-01, 2.87300255e-01, -1.81009547e+00,
2.71829308e-01, 2.08981273e+00, -1.06368605e+00,
-6.35590799e-01, -4.42947961e-01, -2.16390303e-01,
1.15744805e+00],
[ 8.38030855e-01, 9.05788411e-01, -1.70168603e-01,
4.42832550e-01, -4.50982305e-01, -1.05749167e-01,
-9.04463303e-01, -1.12647676e-01, 3.56204815e-01,
9.43393218e-01],
...
[ 6.23190473e-01, -7.32473868e-01, 4.57104028e-01,
-1.87972972e+00, -2.92042951e-01, 2.16390412e+00,
3.18433679e-01, -7.26262677e-01, 2.20551229e-01,
8.90658740e-01],
[-1.65932012e-01, -4.40919334e-02, 1.32834102e+00,
1.58718953e+00, -4.22238091e-01, 6.41002351e-01,
9.71716553e-01, 2.08217333e+00, -9.13751200e-01,
1.42426109e+00],
[ 5.60795586e-01, 4.80651934e-01, 6.67860857e-01,
4.15728900e-01, 1.14891736e+00, 1.88509482e+00,
-6.42442763e-02, -1.08059777e+00, -1.76411602e-02,
-4.82983285e-01],
[-1.72030276e+00, 8.73805690e-01, -8.19069633e-01,
8.99149471e-01, 5.12431594e-01, 1.18207158e-01,
7.08151764e-01, 1.55974711e-01, -2.13951094e-01,
2.46265996e-01],
[-2.55089158e+00, 1.25601765e+00, 4.62435416e-01,
2.13703316e-02, -5.01456593e-01, 3.42289652e-02,
-1.07862695e+00, -2.26112332e-01, 5.18534031e-01,
-6.07100810e-01]]])
* c
(chain, draw, z)
float64
-0.5052 0.2661 ... -0.6676 1.214
array([[[-0.50517279, 0.26614884, -1.65146444, ..., 0.23630007,
-0.2710814 , -0.3805425 ],
[-0.09914482, -0.65050583, -0.37593526, ..., 1.191483 ,
0.26244839, -0.50701715],
[ 0.07011478, -0.67404789, -0.65773377, ..., -1.21332532,
-1.9370579 , 0.43984602],
...,
[-0.74272536, 0.51348611, 1.78787021, ..., -0.11214751,
1.57337754, 1.95024628],
[-0.8175341 , -1.69829433, -0.66615676, ..., -0.98482306,
0.52006695, 0.89447994],
[-1.6209151 , 0.21941275, -0.34492344, ..., 0.93188967,
-0.667589 , 1.2141002 ]]]) - Indexes: (4)
* PandasIndex
PandasIndex(Int64Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
dtype='int64', name='draw'))
* PandasIndex
PandasIndex(Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
* PandasMultiIndex
PandasIndex(MultiIndex([(0, 0),
(0, 1),
(0, 2),
(0, 3),
(1, 0),
(1, 1),
(1, 2),
(1, 3),
(2, 0),
(2, 1),
(2, 2),
(2, 3)],
name='z')) - Attributes: (2)
created_at :
2022-11-16T10:14:46.016833
arviz_version :
0.14.0
- Dimensions: