arviz.InferenceData.rename_dims — ArviZ dev documentation (original) (raw)
InferenceData.rename_dims(name_dict=None, groups=None, filter_groups=None, inplace=False)[source]#
Perform xarray renaming of dimensions on all groups.
Loops groups to perform Dataset.rename_dims(name_dict) for every key in name_dict if key is a dimension of the dataset. The renaming is performed on all relevant groups (like posterior, prior, sample stats) while non relevant groups like observed data are omitted. See xarray.Dataset.rename_dims()
Parameters:
name_dictdict
Dictionary whose keys are current dimension names and whose values are the desired names.
groupsstr or list of str, optional
Groups where the selection is to be applied. Can either be group names or metagroup names.
filter_groups{None, “like”, “regex”}, optional
If None
(default), interpret groups as the real group or metagroup names. If “like”, interpret groups as substrings of the real group or metagroup names. If “regex”, interpret groups as regular expressions on the real group or metagroup names. A la pandas.filter
.
inplacebool, optional
If True
, modify the InferenceData object inplace, otherwise, return the modified copy.
Returns:
A new InferenceData object with renamed dimension by default. When inplace==True
perform renaming in-place and return None
See also
Returns a new object with renamed dimensions only.
Perform xarray renaming of variable and dimensions on all groups of an InferenceData object.
Perform xarray renaming of variable or coordinate names on all groups of an InferenceData object.
Examples
Use rename_dims
to renaming of dimensions on all groups of the InferenceData object. We first check the dimensions of original object:
import arviz as az idata = az.load_arviz_data("rugby") idata
- posterior
<xarray.Dataset> Size: 452kB
Dimensions: (chain: 4, draw: 500, team: 6)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England'
Data variables:
home (chain, draw) float64 16kB ...
intercept (chain, draw) float64 16kB ...
atts_star (chain, draw, team) float64 96kB ...
defs_star (chain, draw, team) float64 96kB ...
sd_att (chain, draw) float64 16kB ...
sd_def (chain, draw) float64 16kB ...
atts (chain, draw, team) float64 96kB ...
defs (chain, draw, team) float64 96kB ...
Attributes:
created_at: 2024-03-06T20:46:23.841916
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9
sampling_time: 8.503105401992798
tuning_steps: 1000- Dimensions:
* chain: 4
* draw: 500
* team: 6 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'],
dtype='<U8') - Data variables: (8)
* home
(chain, draw)
float64
...
[2000 values with dtype=float64]
* intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
* atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
* defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
* sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
* sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
* atts
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
* defs
(chain, draw, team)
float64
...
[12000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team')) - Attributes: (6)
created_at :
2024-03-06T20:46:23.841916
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
sampling_time :
8.503105401992798
tuning_steps :
1000
- Dimensions:
- posterior_predictive
<xarray.Dataset> Size: 2MB
Dimensions: (chain: 4, draw: 500, match: 60)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499
- match (match) <U16 4kB 'Wales Italy' ... 'Ireland England'
home_team (match) <U8 2kB ...
away_team (match) <U8 2kB ...
Data variables:
home_points (chain, draw, match) int64 960kB ...
away_points (chain, draw, match) int64 960kB ...
Attributes:
created_at: 2024-03-06T20:46:25.689246
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* chain: 4
* draw: 500
* match: 60 - Coordinates: (5)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype='<U16')
* home_team
(match)
<U8
...
[60 values with dtype=<U8]
* away_team
(match)
<U8
...
[60 values with dtype=<U8] - Data variables: (2)
* home_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
* away_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (4)
created_at :
2024-03-06T20:46:25.689246
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- log_likelihood
<xarray.Dataset> Size: 2MB
Dimensions: (chain: 4, draw: 500, match: 60)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499
- match (match) <U16 4kB 'Wales Italy' ... 'Ireland England'
home_team (match) <U8 2kB ...
away_team (match) <U8 2kB ...
Data variables:
home_points (chain, draw, match) float64 960kB ...
away_points (chain, draw, match) float64 960kB ...
Attributes:
created_at: 2024-03-06T20:46:24.120642
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* chain: 4
* draw: 500
* match: 60 - Coordinates: (5)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype='<U16')
* home_team
(match)
<U8
...
[60 values with dtype=<U8]
* away_team
(match)
<U8
...
[60 values with dtype=<U8] - Data variables: (2)
* home_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64]
* away_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (4)
created_at :
2024-03-06T20:46:24.120642
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- log_prior
<xarray.Dataset> Size: 260kB
Dimensions: (chain: 4, draw: 500, team: 6)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England'
Data variables:
home (chain, draw) float64 16kB ...
sd_att (chain, draw) float64 16kB ...
sd_def (chain, draw) float64 16kB ...
intercept (chain, draw) float64 16kB ...
atts_star (chain, draw, team) float64 96kB ...
defs_star (chain, draw, team) float64 96kB ...
Attributes:
created_at: 2024-03-06T20:46:24.377610
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* chain: 4
* draw: 500
* team: 6 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'],
dtype='<U8') - Data variables: (6)
* home
(chain, draw)
float64
...
[2000 values with dtype=float64]
* sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
* sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
* intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
* atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
* defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team')) - Attributes: (4)
created_at :
2024-03-06T20:46:24.377610
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- sample_stats
<xarray.Dataset> Size: 248kB
Dimensions: (chain: 4, draw: 500)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499
Data variables: (12/17)
max_energy_error (chain, draw) float64 16kB ...
index_in_trajectory (chain, draw) int64 16kB ...
smallest_eigval (chain, draw) float64 16kB ...
perf_counter_start (chain, draw) float64 16kB ...
largest_eigval (chain, draw) float64 16kB ...
step_size (chain, draw) float64 16kB ...
... ...
reached_max_treedepth (chain, draw) bool 2kB ...
perf_counter_diff (chain, draw) float64 16kB ...
tree_depth (chain, draw) int64 16kB ...
process_time_diff (chain, draw) float64 16kB ...
step_size_bar (chain, draw) float64 16kB ...
energy (chain, draw) float64 16kB ...
Attributes:
created_at: 2024-03-06T20:46:23.854033
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9
sampling_time: 8.503105401992798
tuning_steps: 1000- Dimensions:
* chain: 4
* draw: 500 - Coordinates: (2)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,)) - Data variables: (17)
* max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
* index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
* smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
* perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
* largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
* step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
* n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
* lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
* diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
* energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
* acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
* reached_max_treedepth
(chain, draw)
bool
...
[2000 values with dtype=bool]
* perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
* tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
* process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
* step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
* energy
(chain, draw)
float64
...
[2000 values with dtype=float64] - Indexes: (2)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500)) - Attributes: (6)
created_at :
2024-03-06T20:46:23.854033
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
sampling_time :
8.503105401992798
tuning_steps :
1000
- Dimensions:
- prior
<xarray.Dataset> Size: 116kB
Dimensions: (chain: 1, draw: 500, team: 6)
Coordinates:- chain (chain) int64 8B 0
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England'
Data variables:
atts_star (chain, draw, team) float64 24kB ...
sd_att (chain, draw) float64 4kB ...
atts (chain, draw, team) float64 24kB ...
sd_def (chain, draw) float64 4kB ...
defs (chain, draw, team) float64 24kB ...
intercept (chain, draw) float64 4kB ...
home (chain, draw) float64 4kB ...
defs_star (chain, draw, team) float64 24kB ...
Attributes:
created_at: 2024-03-06T20:46:09.475945
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* chain: 1
* draw: 500
* team: 6 - Coordinates: (3)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'],
dtype='<U8') - Data variables: (8)
* atts_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
* sd_att
(chain, draw)
float64
...
[500 values with dtype=float64]
* atts
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
* sd_def
(chain, draw)
float64
...
[500 values with dtype=float64]
* defs
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
* intercept
(chain, draw)
float64
...
[500 values with dtype=float64]
* home
(chain, draw)
float64
...
[500 values with dtype=float64]
* defs_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team')) - Attributes: (4)
created_at :
2024-03-06T20:46:09.475945
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- prior_predictive
<xarray.Dataset> Size: 492kB
Dimensions: (chain: 1, draw: 500, match: 60)
Coordinates:- chain (chain) int64 8B 0
- draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499
- match (match) <U16 4kB 'Wales Italy' ... 'Ireland England'
home_team (match) <U8 2kB ...
away_team (match) <U8 2kB ...
Data variables:
away_points (chain, draw, match) int64 240kB ...
home_points (chain, draw, match) int64 240kB ...
Attributes:
created_at: 2024-03-06T20:46:09.479330
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* chain: 1
* draw: 500
* match: 60 - Coordinates: (5)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype='<U16')
* home_team
(match)
<U8
...
[60 values with dtype=<U8]
* away_team
(match)
<U8
...
[60 values with dtype=<U8] - Data variables: (2)
* away_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
* home_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (4)
created_at :
2024-03-06T20:46:09.479330
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- observed_data
<xarray.Dataset> Size: 9kB
Dimensions: (match: 60)
Coordinates:- match (match) <U16 4kB 'Wales Italy' ... 'Ireland England'
home_team (match) <U8 2kB ...
away_team (match) <U8 2kB ...
Data variables:
home_points (match) int64 480B ...
away_points (match) int64 480B ...
Attributes:
created_at: 2024-03-06T20:46:09.480812
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* match: 60 - Coordinates: (3)
* match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype='<U16')
* home_team
(match)
<U8
...
[60 values with dtype=<U8]
* away_team
(match)
<U8
...
[60 values with dtype=<U8] - Data variables: (2)
* home_points
(match)
int64
...
[60 values with dtype=int64]
* away_points
(match)
int64
...
[60 values with dtype=int64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (4)
created_at :
2024-03-06T20:46:09.480812
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- match (match) <U16 4kB 'Wales Italy' ... 'Ireland England'
- unconstrained_posterior
<xarray.Dataset> Size: 36kB
Dimensions: (chain: 4, draw: 500)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
Data variables:
sd_att (chain, draw) float64 16kB ...
sd_def (chain, draw) float64 16kB ...
Attributes:
sd_att: pymc.logprob.transforms.LogTransform
sd_def: pymc.logprob.transforms.LogTransform- Dimensions:
* chain: 4
* draw: 500 - Coordinates: (2)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,)) - Data variables: (2)
* sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
* sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64] - Indexes: (2)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500)) - Attributes: (2)
sd_att :
pymc.logprob.transforms.LogTransform
sd_def :
pymc.logprob.transforms.LogTransform
- Dimensions:
In order to rename the dimensions, we use:
idata.rename_dims({"team": "team_new"}, inplace=True) idata
- posterior
<xarray.Dataset> Size: 452kB
Dimensions: (chain: 4, draw: 500, team_new: 6)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- team (team_new) <U8 192B 'Wales' 'France' ... 'Italy' 'England'
Dimensions without coordinates: team_new
Data variables:
home (chain, draw) float64 16kB ...
intercept (chain, draw) float64 16kB ...
atts_star (chain, draw, team_new) float64 96kB ...
defs_star (chain, draw, team_new) float64 96kB ...
sd_att (chain, draw) float64 16kB ...
sd_def (chain, draw) float64 16kB ...
atts (chain, draw, team_new) float64 96kB ...
defs (chain, draw, team_new) float64 96kB ...
Attributes:
created_at: 2024-03-06T20:46:23.841916
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9
sampling_time: 8.503105401992798
tuning_steps: 1000- Dimensions:
* chain: 4
* draw: 500
* team_new: 6 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* team
(team_new)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'],
dtype='<U8') - Data variables: (8)
* home
(chain, draw)
float64
...
[2000 values with dtype=float64]
* intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
* atts_star
(chain, draw, team_new)
float64
...
[12000 values with dtype=float64]
* defs_star
(chain, draw, team_new)
float64
...
[12000 values with dtype=float64]
* sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
* sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
* atts
(chain, draw, team_new)
float64
...
[12000 values with dtype=float64]
* defs
(chain, draw, team_new)
float64
...
[12000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team')) - Attributes: (6)
created_at :
2024-03-06T20:46:23.841916
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
sampling_time :
8.503105401992798
tuning_steps :
1000
- Dimensions:
- posterior_predictive
<xarray.Dataset> Size: 2MB
Dimensions: (chain: 4, draw: 500, match: 60)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499
- match (match) <U16 4kB 'Wales Italy' ... 'Ireland England'
home_team (match) <U8 2kB ...
away_team (match) <U8 2kB ...
Data variables:
home_points (chain, draw, match) int64 960kB ...
away_points (chain, draw, match) int64 960kB ...
Attributes:
created_at: 2024-03-06T20:46:25.689246
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* chain: 4
* draw: 500
* match: 60 - Coordinates: (5)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype='<U16')
* home_team
(match)
<U8
...
[60 values with dtype=<U8]
* away_team
(match)
<U8
...
[60 values with dtype=<U8] - Data variables: (2)
* home_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
* away_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (4)
created_at :
2024-03-06T20:46:25.689246
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- log_likelihood
<xarray.Dataset> Size: 2MB
Dimensions: (chain: 4, draw: 500, match: 60)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499
- match (match) <U16 4kB 'Wales Italy' ... 'Ireland England'
home_team (match) <U8 2kB ...
away_team (match) <U8 2kB ...
Data variables:
home_points (chain, draw, match) float64 960kB ...
away_points (chain, draw, match) float64 960kB ...
Attributes:
created_at: 2024-03-06T20:46:24.120642
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* chain: 4
* draw: 500
* match: 60 - Coordinates: (5)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype='<U16')
* home_team
(match)
<U8
...
[60 values with dtype=<U8]
* away_team
(match)
<U8
...
[60 values with dtype=<U8] - Data variables: (2)
* home_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64]
* away_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (4)
created_at :
2024-03-06T20:46:24.120642
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- log_prior
<xarray.Dataset> Size: 260kB
Dimensions: (chain: 4, draw: 500, team_new: 6)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- team (team_new) <U8 192B 'Wales' 'France' ... 'Italy' 'England'
Dimensions without coordinates: team_new
Data variables:
home (chain, draw) float64 16kB ...
sd_att (chain, draw) float64 16kB ...
sd_def (chain, draw) float64 16kB ...
intercept (chain, draw) float64 16kB ...
atts_star (chain, draw, team_new) float64 96kB ...
defs_star (chain, draw, team_new) float64 96kB ...
Attributes:
created_at: 2024-03-06T20:46:24.377610
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* chain: 4
* draw: 500
* team_new: 6 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* team
(team_new)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'],
dtype='<U8') - Data variables: (6)
* home
(chain, draw)
float64
...
[2000 values with dtype=float64]
* sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
* sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
* intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
* atts_star
(chain, draw, team_new)
float64
...
[12000 values with dtype=float64]
* defs_star
(chain, draw, team_new)
float64
...
[12000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team')) - Attributes: (4)
created_at :
2024-03-06T20:46:24.377610
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- sample_stats
<xarray.Dataset> Size: 248kB
Dimensions: (chain: 4, draw: 500)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499
Data variables: (12/17)
max_energy_error (chain, draw) float64 16kB ...
index_in_trajectory (chain, draw) int64 16kB ...
smallest_eigval (chain, draw) float64 16kB ...
perf_counter_start (chain, draw) float64 16kB ...
largest_eigval (chain, draw) float64 16kB ...
step_size (chain, draw) float64 16kB ...
... ...
reached_max_treedepth (chain, draw) bool 2kB ...
perf_counter_diff (chain, draw) float64 16kB ...
tree_depth (chain, draw) int64 16kB ...
process_time_diff (chain, draw) float64 16kB ...
step_size_bar (chain, draw) float64 16kB ...
energy (chain, draw) float64 16kB ...
Attributes:
created_at: 2024-03-06T20:46:23.854033
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9
sampling_time: 8.503105401992798
tuning_steps: 1000- Dimensions:
* chain: 4
* draw: 500 - Coordinates: (2)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,)) - Data variables: (17)
* max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
* index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
* smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
* perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
* largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
* step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
* n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
* lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
* diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
* energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
* acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
* reached_max_treedepth
(chain, draw)
bool
...
[2000 values with dtype=bool]
* perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
* tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
* process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
* step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
* energy
(chain, draw)
float64
...
[2000 values with dtype=float64] - Indexes: (2)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500)) - Attributes: (6)
created_at :
2024-03-06T20:46:23.854033
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
sampling_time :
8.503105401992798
tuning_steps :
1000
- Dimensions:
- prior
<xarray.Dataset> Size: 116kB
Dimensions: (chain: 1, draw: 500, team_new: 6)
Coordinates:- chain (chain) int64 8B 0
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- team (team_new) <U8 192B 'Wales' 'France' ... 'Italy' 'England'
Dimensions without coordinates: team_new
Data variables:
atts_star (chain, draw, team_new) float64 24kB ...
sd_att (chain, draw) float64 4kB ...
atts (chain, draw, team_new) float64 24kB ...
sd_def (chain, draw) float64 4kB ...
defs (chain, draw, team_new) float64 24kB ...
intercept (chain, draw) float64 4kB ...
home (chain, draw) float64 4kB ...
defs_star (chain, draw, team_new) float64 24kB ...
Attributes:
created_at: 2024-03-06T20:46:09.475945
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* chain: 1
* draw: 500
* team_new: 6 - Coordinates: (3)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* team
(team_new)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'],
dtype='<U8') - Data variables: (8)
* atts_star
(chain, draw, team_new)
float64
...
[3000 values with dtype=float64]
* sd_att
(chain, draw)
float64
...
[500 values with dtype=float64]
* atts
(chain, draw, team_new)
float64
...
[3000 values with dtype=float64]
* sd_def
(chain, draw)
float64
...
[500 values with dtype=float64]
* defs
(chain, draw, team_new)
float64
...
[3000 values with dtype=float64]
* intercept
(chain, draw)
float64
...
[500 values with dtype=float64]
* home
(chain, draw)
float64
...
[500 values with dtype=float64]
* defs_star
(chain, draw, team_new)
float64
...
[3000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team')) - Attributes: (4)
created_at :
2024-03-06T20:46:09.475945
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- prior_predictive
<xarray.Dataset> Size: 492kB
Dimensions: (chain: 1, draw: 500, match: 60)
Coordinates:- chain (chain) int64 8B 0
- draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499
- match (match) <U16 4kB 'Wales Italy' ... 'Ireland England'
home_team (match) <U8 2kB ...
away_team (match) <U8 2kB ...
Data variables:
away_points (chain, draw, match) int64 240kB ...
home_points (chain, draw, match) int64 240kB ...
Attributes:
created_at: 2024-03-06T20:46:09.479330
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* chain: 1
* draw: 500
* match: 60 - Coordinates: (5)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype='<U16')
* home_team
(match)
<U8
...
[60 values with dtype=<U8]
* away_team
(match)
<U8
...
[60 values with dtype=<U8] - Data variables: (2)
* away_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
* home_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (4)
created_at :
2024-03-06T20:46:09.479330
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- observed_data
<xarray.Dataset> Size: 9kB
Dimensions: (match: 60)
Coordinates:- match (match) <U16 4kB 'Wales Italy' ... 'Ireland England'
home_team (match) <U8 2kB ...
away_team (match) <U8 2kB ...
Data variables:
home_points (match) int64 480B ...
away_points (match) int64 480B ...
Attributes:
created_at: 2024-03-06T20:46:09.480812
arviz_version: 0.17.0
inference_library: pymc
inference_library_version: 5.10.4+7.g34d2a5d9- Dimensions:
* match: 60 - Coordinates: (3)
* match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'], dtype='<U16')
* home_team
(match)
<U8
...
[60 values with dtype=<U8]
* away_team
(match)
<U8
...
[60 values with dtype=<U8] - Data variables: (2)
* home_points
(match)
int64
...
[60 values with dtype=int64]
* away_points
(match)
int64
...
[60 values with dtype=int64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales',
'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland',
'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales',
'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England',
'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France',
'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England',
'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales',
'Scotland Ireland', 'England France', 'France Italy',
'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland',
'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland',
'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy',
'Ireland Scotland', 'France England', 'Scotland Ireland',
'England France', 'Italy Wales', 'Italy Ireland', 'Wales England',
'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy',
'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy',
'France Wales', 'Ireland England'],
dtype='object', name='match')) - Attributes: (4)
created_at :
2024-03-06T20:46:09.480812
arviz_version :
0.17.0
inference_library :
pymc
inference_library_version :
5.10.4+7.g34d2a5d9
- Dimensions:
- match (match) <U16 4kB 'Wales Italy' ... 'Ireland England'
- unconstrained_posterior
<xarray.Dataset> Size: 36kB
Dimensions: (chain: 4, draw: 500)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
Data variables:
sd_att (chain, draw) float64 16kB ...
sd_def (chain, draw) float64 16kB ...
Attributes:
sd_att: pymc.logprob.transforms.LogTransform
sd_def: pymc.logprob.transforms.LogTransform- Dimensions:
* chain: 4
* draw: 500 - Coordinates: (2)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,)) - Data variables: (2)
* sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
* sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64] - Indexes: (2)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500)) - Attributes: (2)
sd_att :
pymc.logprob.transforms.LogTransform
sd_def :
pymc.logprob.transforms.LogTransform
- Dimensions: