arviz.InferenceData.sel — ArviZ dev documentation (original) (raw)
InferenceData.sel(groups=None, filter_groups=None, inplace=False, chain_prior=None, **kwargs)[source]#
Perform an xarray selection on all groups.
Loops groups to perform Dataset.sel(key=item) for every kwarg if key is a dimension of the dataset. One example could be performing a burn in cut on the InferenceData object or discarding a chain. The selection is performed on all relevant groups (like posterior, prior, sample stats) while non relevant groups like observed data are omitted. See xarray.Dataset.sel
Parameters:
groupsstr or list of str, optional
Groups where the selection is to be applied. Can either be group names or metagroup names.
filter_groups{None, “like”, “regex”}, optional, default=None
If None
(default), interpret groups as the real group or metagroup names. If “like”, interpret groups as substrings of the real group or metagroup names. If “regex”, interpret groups as regular expressions on the real group or metagroup names. A la pandas.filter
.
inplacebool, optional
If True
, modify the InferenceData object inplace, otherwise, return the modified copy.
chain_priorbool, optional, deprecated
If False
, do not select prior related groups using chain
dim. Otherwise, use selection on chain
if present. Default=False
kwargsdict, optional
It must be accepted by Dataset.sel().
Returns:
A new InferenceData object by default. When inplace==True
perform selection in-place and return None
See also
Returns a new dataset with each array indexed by tick labels along the specified dimension(s).
Returns a new dataset with each array indexed along the specified dimension(s).
Examples
Use sel
to discard one chain of the InferenceData object. We first check the dimensions of the original object:
import arviz as az idata = az.load_arviz_data("centered_eight") idata
- posterior
<xarray.Dataset> Size: 165kB
Dimensions: (chain: 4, draw: 500, school: 8)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
mu (chain, draw) float64 16kB ...
theta (chain, draw, school) float64 128kB ...
tau (chain, draw) float64 16kB ...
Attributes:
created_at: 2022-10-13T14:37:37.315398
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2
sampling_time: 7.480114936828613
tuning_steps: 1000- Dimensions:
* chain: 4
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (3)
* mu
(chain, draw)
float64
...
[2000 values with dtype=float64]
* theta
(chain, draw, school)
float64
...
[16000 values with dtype=float64]
* tau
(chain, draw)
float64
...
[2000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (6)
created_at :
2022-10-13T14:37:37.315398
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
sampling_time :
7.480114936828613
tuning_steps :
1000
- Dimensions:
- posterior_predictive
<xarray.Dataset> Size: 133kB
Dimensions: (chain: 4, draw: 500, school: 8)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 128kB ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:41.460544
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 4
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[16000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:41.460544
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- log_likelihood
<xarray.Dataset> Size: 133kB
Dimensions: (chain: 4, draw: 500, school: 8)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 128kB ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:37.487399
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 4
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[16000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:37.487399
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- sample_stats
<xarray.Dataset> Size: 246kB
Dimensions: (chain: 4, draw: 500)
Coordinates:- chain (chain) int64 32B 0 1 2 3
- draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499
Data variables: (12/16)
max_energy_error (chain, draw) float64 16kB ...
energy_error (chain, draw) float64 16kB ...
lp (chain, draw) float64 16kB ...
index_in_trajectory (chain, draw) int64 16kB ...
acceptance_rate (chain, draw) float64 16kB ...
diverging (chain, draw) bool 2kB ...
... ...
smallest_eigval (chain, draw) float64 16kB ...
step_size_bar (chain, draw) float64 16kB ...
step_size (chain, draw) float64 16kB ...
energy (chain, draw) float64 16kB ...
tree_depth (chain, draw) int64 16kB ...
perf_counter_diff (chain, draw) float64 16kB ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:37.324929
inference_library: pymc
inference_library_version: 4.2.2
sampling_time: 7.480114936828613
tuning_steps: 1000- Dimensions:
* chain: 4
* draw: 500 - Coordinates: (2)
* chain
(chain)
int64
0 1 2 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,)) - Data variables: (16)
* max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
* energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
* lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
* index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
* acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
* diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
* process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
* n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
* perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
* largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
* smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
* step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
* step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
* energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
* tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
* perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64] - Indexes: (2)
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500)) - Attributes: (6)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:37.324929
inference_library :
pymc
inference_library_version :
4.2.2
sampling_time :
7.480114936828613
tuning_steps :
1000
- Dimensions:
- prior
<xarray.Dataset> Size: 45kB
Dimensions: (chain: 1, draw: 500, school: 8)
Coordinates:- chain (chain) int64 8B 0
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
tau (chain, draw) float64 4kB ...
theta (chain, draw, school) float64 32kB ...
mu (chain, draw) float64 4kB ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:26.602116
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 1
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (3)
* tau
(chain, draw)
float64
...
[500 values with dtype=float64]
* theta
(chain, draw, school)
float64
...
[4000 values with dtype=float64]
* mu
(chain, draw)
float64
...
[500 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:26.602116
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- prior_predictive
<xarray.Dataset> Size: 37kB
Dimensions: (chain: 1, draw: 500, school: 8)
Coordinates:- chain (chain) int64 8B 0
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 32kB ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:26.604969
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 1
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[4000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:26.604969
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- observed_data
<xarray.Dataset> Size: 576B
Dimensions: (school: 8)
Coordinates:- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
obs (school) float64 64B ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:26.606375
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* school: 8 - Coordinates: (1)
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (1)
* obs
(school)
float64
...
[8 values with dtype=float64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:26.606375
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
- constant_data
<xarray.Dataset> Size: 576B
Dimensions: (school: 8)
Coordinates:- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
scores (school) float64 64B ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:26.607471
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* school: 8 - Coordinates: (1)
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (1)
* scores
(school)
float64
...
[8 values with dtype=float64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:26.607471
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
In order to remove the third chain:
idata_subset = idata.sel(chain=[0, 1, 3], groups="posterior_groups") idata_subset
- posterior
<xarray.Dataset> Size: 125kB
Dimensions: (chain: 3, draw: 500, school: 8)
Coordinates:- chain (chain) int64 24B 0 1 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
mu (chain, draw) float64 12kB ...
theta (chain, draw, school) float64 96kB ...
tau (chain, draw) float64 12kB ...
Attributes:
created_at: 2022-10-13T14:37:37.315398
arviz_version: 0.13.0.dev0
inference_library: pymc
inference_library_version: 4.2.2
sampling_time: 7.480114936828613
tuning_steps: 1000- Dimensions:
* chain: 3
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (3)
* mu
(chain, draw)
float64
...
[1500 values with dtype=float64]
* theta
(chain, draw, school)
float64
...
[12000 values with dtype=float64]
* tau
(chain, draw)
float64
...
[1500 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (6)
created_at :
2022-10-13T14:37:37.315398
arviz_version :
0.13.0.dev0
inference_library :
pymc
inference_library_version :
4.2.2
sampling_time :
7.480114936828613
tuning_steps :
1000
- Dimensions:
- posterior_predictive
<xarray.Dataset> Size: 101kB
Dimensions: (chain: 3, draw: 500, school: 8)
Coordinates:- chain (chain) int64 24B 0 1 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 96kB ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:41.460544
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 3
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[12000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:41.460544
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- log_likelihood
<xarray.Dataset> Size: 101kB
Dimensions: (chain: 3, draw: 500, school: 8)
Coordinates:- chain (chain) int64 24B 0 1 3
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 96kB ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:37.487399
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 3
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0 1 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[12000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0, 1, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:37.487399
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- sample_stats
<xarray.Dataset> Size: 186kB
Dimensions: (chain: 3, draw: 500)
Coordinates:- chain (chain) int64 24B 0 1 3
- draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499
Data variables: (12/16)
max_energy_error (chain, draw) float64 12kB ...
energy_error (chain, draw) float64 12kB ...
lp (chain, draw) float64 12kB ...
index_in_trajectory (chain, draw) int64 12kB ...
acceptance_rate (chain, draw) float64 12kB ...
diverging (chain, draw) bool 2kB ...
... ...
smallest_eigval (chain, draw) float64 12kB ...
step_size_bar (chain, draw) float64 12kB ...
step_size (chain, draw) float64 12kB ...
energy (chain, draw) float64 12kB ...
tree_depth (chain, draw) int64 12kB ...
perf_counter_diff (chain, draw) float64 12kB ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:37.324929
inference_library: pymc
inference_library_version: 4.2.2
sampling_time: 7.480114936828613
tuning_steps: 1000- Dimensions:
* chain: 3
* draw: 500 - Coordinates: (2)
* chain
(chain)
int64
0 1 3
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,)) - Data variables: (16)
* max_energy_error
(chain, draw)
float64
...
[1500 values with dtype=float64]
* energy_error
(chain, draw)
float64
...
[1500 values with dtype=float64]
* lp
(chain, draw)
float64
...
[1500 values with dtype=float64]
* index_in_trajectory
(chain, draw)
int64
...
[1500 values with dtype=int64]
* acceptance_rate
(chain, draw)
float64
...
[1500 values with dtype=float64]
* diverging
(chain, draw)
bool
...
[1500 values with dtype=bool]
* process_time_diff
(chain, draw)
float64
...
[1500 values with dtype=float64]
* n_steps
(chain, draw)
float64
...
[1500 values with dtype=float64]
* perf_counter_start
(chain, draw)
float64
...
[1500 values with dtype=float64]
* largest_eigval
(chain, draw)
float64
...
[1500 values with dtype=float64]
* smallest_eigval
(chain, draw)
float64
...
[1500 values with dtype=float64]
* step_size_bar
(chain, draw)
float64
...
[1500 values with dtype=float64]
* step_size
(chain, draw)
float64
...
[1500 values with dtype=float64]
* energy
(chain, draw)
float64
...
[1500 values with dtype=float64]
* tree_depth
(chain, draw)
int64
...
[1500 values with dtype=int64]
* perf_counter_diff
(chain, draw)
float64
...
[1500 values with dtype=float64] - Indexes: (2)
* PandasIndex
PandasIndex(Index([0, 1, 3], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500)) - Attributes: (6)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:37.324929
inference_library :
pymc
inference_library_version :
4.2.2
sampling_time :
7.480114936828613
tuning_steps :
1000
- Dimensions:
- prior
<xarray.Dataset> Size: 45kB
Dimensions: (chain: 1, draw: 500, school: 8)
Coordinates:- chain (chain) int64 8B 0
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
tau (chain, draw) float64 4kB ...
theta (chain, draw, school) float64 32kB ...
mu (chain, draw) float64 4kB ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:26.602116
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 1
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (3)
* tau
(chain, draw)
float64
...
[500 values with dtype=float64]
* theta
(chain, draw, school)
float64
...
[4000 values with dtype=float64]
* mu
(chain, draw)
float64
...
[500 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:26.602116
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- prior_predictive
<xarray.Dataset> Size: 37kB
Dimensions: (chain: 1, draw: 500, school: 8)
Coordinates:- chain (chain) int64 8B 0
- draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
obs (chain, draw, school) float64 32kB ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:26.604969
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* chain: 1
* draw: 500
* school: 8 - Coordinates: (3)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (1)
* obs
(chain, draw, school)
float64
...
[4000 values with dtype=float64] - Indexes: (3)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
490, 491, 492, 493, 494, 495, 496, 497, 498, 499],
dtype='int64', name='draw', length=500))
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:26.604969
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- observed_data
<xarray.Dataset> Size: 576B
Dimensions: (school: 8)
Coordinates:- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
obs (school) float64 64B ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:26.606375
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* school: 8 - Coordinates: (1)
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (1)
* obs
(school)
float64
...
[8 values with dtype=float64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:26.606375
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
- constant_data
<xarray.Dataset> Size: 576B
Dimensions: (school: 8)
Coordinates:- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'
Data variables:
scores (school) float64 64B ...
Attributes:
arviz_version: 0.13.0.dev0
created_at: 2022-10-13T14:37:26.607471
inference_library: pymc
inference_library_version: 4.2.2- Dimensions:
* school: 8 - Coordinates: (1)
* school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16') - Data variables: (1)
* scores
(school)
float64
...
[8 values with dtype=float64] - Indexes: (1)
* PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',
'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'],
dtype='object', name='school')) - Attributes: (4)
arviz_version :
0.13.0.dev0
created_at :
2022-10-13T14:37:26.607471
inference_library :
pymc
inference_library_version :
4.2.2
- Dimensions:
- school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'