arviz.InferenceData.unstack — ArviZ dev documentation (original) (raw)
InferenceData.unstack(dim=None, groups=None, filter_groups=None, inplace=False)[source]#
Perform an xarray unstacking on all groups.
Unstack existing dimensions corresponding to MultiIndexes into multiple new dimensions. Loops groups to perform Dataset.unstack(key=value). The selection is performed on all relevant groups (like posterior, prior, sample stats) while non relevant groups like observed data are omitted. See xarray.Dataset.unstack()
Parameters:
dimHashable
or iterable of Hashable
, optional
Dimension(s) over which to unstack. By default unstacks all MultiIndexes.
groupsstr or list of str, optional
Groups where the selection is to be applied. Can either be group names or metagroup names.
filter_groups{None, “like”, “regex”}, optional
If None
(default), interpret groups as the real group or metagroup names. If “like”, interpret groups as substrings of the real group or metagroup names. If “regex”, interpret groups as regular expressions on the real group or metagroup names. A la pandas.filter
.
inplacebool, optional
If True
, modify the InferenceData object inplace, otherwise, return the modified copy.
Returns:
A new InferenceData object by default. When inplace==True
perform selection in place and return None
See also
Unstack existing dimensions corresponding to MultiIndexes into multiple new dimensions.
Perform an xarray stacking on all groups of InferenceData object.
Examples
Use unstack
to unstack existing dimensions corresponding to MultiIndexes into multiple new dimensions. We first stack two dimensions c1
and c99
to z
:
import arviz as az import numpy as np datadict = { "a": np.random.randn(100), "b": np.random.randn(1, 100, 10), "c": np.random.randn(1, 100, 3, 4), } coords = { "c1": np.arange(3), "c99": np.arange(4), "b1": np.arange(10), } dims = {"c": ["c1", "c99"], "b": ["b1"]} idata = az.from_dict( posterior=datadict, posterior_predictive=datadict, coords=coords, dims=dims ) idata.stack(z=["c1", "c99"], inplace=True) idata
- posterior
<xarray.Dataset> Size: 20kB
Dimensions: (chain: 1, draw: 100, b1: 10, z: 12)
Coordinates:- chain (chain) int64 8B 0
- draw (draw) int64 800B 0 1 2 3 4 5 6 7 8 ... 91 92 93 94 95 96 97 98 99
- b1 (b1) int64 80B 0 1 2 3 4 5 6 7 8 9
- z (z) object 96B MultiIndex
- c1 (z) int64 96B 0 0 0 0 1 1 1 1 2 2 2 2
- c99 (z) int64 96B 0 1 2 3 0 1 2 3 0 1 2 3
Data variables:
a (chain, draw) float64 800B -1.235 -0.4379 2.398 ... 0.456 0.1001
b (chain, draw, b1) float64 8kB 0.8308 0.3675 ... 1.352 -0.7243
c (chain, draw, z) float64 10kB 0.6683 0.3671 ... -0.3076 -2.026
Attributes:
created_at: 2025-04-28T09:39:31.189868+00:00
arviz_version: 0.22.0dev- Dimensions:
* chain: 1
* draw: 100
* b1: 10
* z: 12 - Coordinates: (6)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
* b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
* z
(z)
object
MultiIndex
array([(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (2, 3)], dtype=object)
* c1
(z)
int64
0 0 0 0 1 1 1 1 2 2 2 2
array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2])
* c99
(z)
int64
0 1 2 3 0 1 2 3 0 1 2 3
array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]) - Data variables: (3)
* a
(chain, draw)
float64
-1.235 -0.4379 ... 0.456 0.1001
array([[-1.23476879e+00, -4.37926161e-01, 2.39817109e+00,
1.34348381e+00, 1.21339485e-03, 3.15438444e-01,
7.35033609e-01, 9.65560953e-01, 8.24312202e-03,
-1.80310603e+00, 4.08101885e-01, -2.95430115e-01,
2.78190943e-01, 9.90668634e-01, -3.99399284e-01,
-2.72027384e-01, 1.19196818e+00, 3.49969219e-01,
1.19622511e+00, -8.61209810e-01, 9.85200244e-01,
1.20305854e-01, -1.36472965e+00, 1.03398617e-01,
-1.19051287e+00, 2.11495498e-01, 1.04179059e+00,
-1.03710508e+00, -1.63802057e-01, -3.99820039e-01,
1.30688880e+00, -3.83057110e-02, -9.06050583e-01,
2.48820551e-01, -5.08974977e-01, 1.04261162e+00,
1.40584285e+00, 6.51531365e-01, -5.29515535e-01,
-3.04593589e+00, -5.68566750e-01, -2.78093108e-01,
1.94761103e-01, 2.05373116e-01, -5.83335543e-01,
1.17035863e+00, -2.97906294e-01, -1.67402970e+00,
-1.72365090e+00, 1.92581696e-01, -2.60265647e-01,
5.21271934e-01, 3.56001567e-01, -1.60751185e+00,
1.61585296e+00, -6.82963522e-01, 8.24159730e-01,
4.09450199e-01, 4.04770256e-01, 4.60228804e-01,
-6.82661143e-01, -1.02003227e-01, -1.13765291e-01,
-1.14235773e+00, -4.15391532e-01, -1.41067090e+00,
-1.46574436e+00, -3.13202053e-01, 1.39406586e+00,
-1.29511522e+00, 9.39537140e-01, -4.55419141e-01,
6.04370324e-01, 1.57209831e+00, 5.40923270e-01,
4.38347290e-02, 3.38358419e-01, 1.86168465e+00,
-6.90718230e-01, 6.26648700e-01, 8.05991078e-01,
-4.46184294e-01, 1.08982394e+00, -1.77999060e-01,
1.26866086e+00, 5.97092174e-01, -2.25120881e-01,
1.56019985e+00, 8.03527842e-01, 1.62935836e+00,
-2.97623983e-01, -3.47755384e-01, -9.01573751e-01,
1.10869309e+00, -5.05827277e-01, -9.74696050e-01,
9.92947428e-01, -8.09514001e-01, 4.56045584e-01,
1.00071620e-01]])
* b
(chain, draw, b1)
float64
0.8308 0.3675 ... 1.352 -0.7243
array([[[ 8.30820313e-01, 3.67493125e-01, 7.98132599e-01,
7.70438773e-01, 7.74105192e-01, -1.79324779e+00,
-3.87027470e-01, 4.47196510e-01, 1.48533864e+00,
-1.71888135e+00],
[ 2.31336080e+00, 1.59004210e+00, 6.45303868e-01,
-3.19905569e-01, -1.53934763e+00, -3.88556060e-01,
-8.84357669e-02, -2.00510349e+00, -5.05835156e-01,
-1.08980435e-01],
[-6.89865444e-01, -4.40131470e-01, -7.75649580e-01,
9.08851564e-01, -5.06268792e-01, -1.08475365e+00,
1.21951542e-01, 9.88583270e-01, 1.20366925e+00,
9.18991064e-01],
[ 7.17173433e-01, -7.51736031e-02, -2.08266627e+00,
-6.78884685e-01, 2.11067012e+00, 4.88026636e-01,
-1.67310695e-01, 8.26119703e-02, 5.89468534e-01,
-5.41927204e-01],
[ 1.59644522e-01, 1.07249736e-01, -4.47087991e-01,
4.35488424e-01, 6.84150763e-02, -1.43832679e+00,
-2.08831254e-01, -1.01929040e+00, -1.00895302e+00,
7.43382360e-01],
...
[-1.14058869e+00, 3.62715978e-01, 7.68477867e-01,
-2.58526361e+00, -3.00416780e-01, 9.69476314e-01,
-2.19682797e-01, 2.19860620e-01, 2.79471318e-01,
-1.04811112e-01],
[-1.54001992e+00, -6.22544285e-01, -3.64170102e-02,
-1.09635636e+00, -9.05170731e-01, -1.10786184e-01,
-1.39171493e+00, 9.86604489e-01, -1.08879557e+00,
-6.08548011e-01],
[ 6.17575313e-01, -2.13403790e-01, 2.53992666e+00,
5.19865975e-01, -2.07572474e-01, -7.87923937e-01,
5.70160687e-01, -1.04905918e+00, 1.12983874e+00,
-4.39407501e-01],
[-1.11729467e-01, -4.22175794e-01, -2.25268553e+00,
-1.19606496e-01, -3.49896568e-01, -2.93150181e-01,
-2.99802888e-01, -6.05110162e-01, 7.54196773e-01,
6.87767928e-01],
[-2.28555530e-02, -1.54576660e+00, 3.18805345e-01,
4.06413464e-01, -1.27948262e+00, -1.99383849e-01,
3.05378445e-01, -2.80427530e-01, 1.35221088e+00,
-7.24303598e-01]]])
* c
(chain, draw, z)
float64
0.6683 0.3671 ... -0.3076 -2.026
array([[[ 0.66831564, 0.36708198, 0.22199467, ..., 1.25771678,
0.3450337 , -1.1125579 ],
[-0.93983173, 1.13954104, 2.21804669, ..., 0.77809689,
-0.21642523, 0.00635791],
[-0.20901604, 0.77571308, -0.25241717, ..., -0.9995084 ,
-1.38578638, -0.28135435],
...,
[ 0.16802892, 0.32229523, -0.85724513, ..., -0.81558217,
0.96093822, 0.55302968],
[ 0.02318034, 1.17943896, -0.87826199, ..., 0.89085042,
0.12206333, 1.54868647],
[-2.03239759, -0.18238141, -0.97005327, ..., 0.38594957,
-0.30756754, -2.0262429 ]]], shape=(1, 100, 12)) - Indexes: (4)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
dtype='int64', name='draw'))
* PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
* PandasMultiIndex
PandasIndex(MultiIndex([(0, 0),
(0, 1),
(0, 2),
(0, 3),
(1, 0),
(1, 1),
(1, 2),
(1, 3),
(2, 0),
(2, 1),
(2, 2),
(2, 3)],
name='z')) - Attributes: (2)
created_at :
2025-04-28T09:39:31.189868+00:00
arviz_version :
0.22.0dev
- Dimensions:
- posterior_predictive
<xarray.Dataset> Size: 20kB
Dimensions: (chain: 1, draw: 100, b1: 10, z: 12)
Coordinates:- chain (chain) int64 8B 0
- draw (draw) int64 800B 0 1 2 3 4 5 6 7 8 ... 91 92 93 94 95 96 97 98 99
- b1 (b1) int64 80B 0 1 2 3 4 5 6 7 8 9
- z (z) object 96B MultiIndex
- c1 (z) int64 96B 0 0 0 0 1 1 1 1 2 2 2 2
- c99 (z) int64 96B 0 1 2 3 0 1 2 3 0 1 2 3
Data variables:
a (chain, draw) float64 800B -1.235 -0.4379 2.398 ... 0.456 0.1001
b (chain, draw, b1) float64 8kB 0.8308 0.3675 ... 1.352 -0.7243
c (chain, draw, z) float64 10kB 0.6683 0.3671 ... -0.3076 -2.026
Attributes:
created_at: 2025-04-28T09:39:31.192125+00:00
arviz_version: 0.22.0dev- Dimensions:
* chain: 1
* draw: 100
* b1: 10
* z: 12 - Coordinates: (6)
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
* b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
* z
(z)
object
MultiIndex
array([(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (2, 3)], dtype=object)
* c1
(z)
int64
0 0 0 0 1 1 1 1 2 2 2 2
array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2])
* c99
(z)
int64
0 1 2 3 0 1 2 3 0 1 2 3
array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]) - Data variables: (3)
* a
(chain, draw)
float64
-1.235 -0.4379 ... 0.456 0.1001
array([[-1.23476879e+00, -4.37926161e-01, 2.39817109e+00,
1.34348381e+00, 1.21339485e-03, 3.15438444e-01,
7.35033609e-01, 9.65560953e-01, 8.24312202e-03,
-1.80310603e+00, 4.08101885e-01, -2.95430115e-01,
2.78190943e-01, 9.90668634e-01, -3.99399284e-01,
-2.72027384e-01, 1.19196818e+00, 3.49969219e-01,
1.19622511e+00, -8.61209810e-01, 9.85200244e-01,
1.20305854e-01, -1.36472965e+00, 1.03398617e-01,
-1.19051287e+00, 2.11495498e-01, 1.04179059e+00,
-1.03710508e+00, -1.63802057e-01, -3.99820039e-01,
1.30688880e+00, -3.83057110e-02, -9.06050583e-01,
2.48820551e-01, -5.08974977e-01, 1.04261162e+00,
1.40584285e+00, 6.51531365e-01, -5.29515535e-01,
-3.04593589e+00, -5.68566750e-01, -2.78093108e-01,
1.94761103e-01, 2.05373116e-01, -5.83335543e-01,
1.17035863e+00, -2.97906294e-01, -1.67402970e+00,
-1.72365090e+00, 1.92581696e-01, -2.60265647e-01,
5.21271934e-01, 3.56001567e-01, -1.60751185e+00,
1.61585296e+00, -6.82963522e-01, 8.24159730e-01,
4.09450199e-01, 4.04770256e-01, 4.60228804e-01,
-6.82661143e-01, -1.02003227e-01, -1.13765291e-01,
-1.14235773e+00, -4.15391532e-01, -1.41067090e+00,
-1.46574436e+00, -3.13202053e-01, 1.39406586e+00,
-1.29511522e+00, 9.39537140e-01, -4.55419141e-01,
6.04370324e-01, 1.57209831e+00, 5.40923270e-01,
4.38347290e-02, 3.38358419e-01, 1.86168465e+00,
-6.90718230e-01, 6.26648700e-01, 8.05991078e-01,
-4.46184294e-01, 1.08982394e+00, -1.77999060e-01,
1.26866086e+00, 5.97092174e-01, -2.25120881e-01,
1.56019985e+00, 8.03527842e-01, 1.62935836e+00,
-2.97623983e-01, -3.47755384e-01, -9.01573751e-01,
1.10869309e+00, -5.05827277e-01, -9.74696050e-01,
9.92947428e-01, -8.09514001e-01, 4.56045584e-01,
1.00071620e-01]])
* b
(chain, draw, b1)
float64
0.8308 0.3675 ... 1.352 -0.7243
array([[[ 8.30820313e-01, 3.67493125e-01, 7.98132599e-01,
7.70438773e-01, 7.74105192e-01, -1.79324779e+00,
-3.87027470e-01, 4.47196510e-01, 1.48533864e+00,
-1.71888135e+00],
[ 2.31336080e+00, 1.59004210e+00, 6.45303868e-01,
-3.19905569e-01, -1.53934763e+00, -3.88556060e-01,
-8.84357669e-02, -2.00510349e+00, -5.05835156e-01,
-1.08980435e-01],
[-6.89865444e-01, -4.40131470e-01, -7.75649580e-01,
9.08851564e-01, -5.06268792e-01, -1.08475365e+00,
1.21951542e-01, 9.88583270e-01, 1.20366925e+00,
9.18991064e-01],
[ 7.17173433e-01, -7.51736031e-02, -2.08266627e+00,
-6.78884685e-01, 2.11067012e+00, 4.88026636e-01,
-1.67310695e-01, 8.26119703e-02, 5.89468534e-01,
-5.41927204e-01],
[ 1.59644522e-01, 1.07249736e-01, -4.47087991e-01,
4.35488424e-01, 6.84150763e-02, -1.43832679e+00,
-2.08831254e-01, -1.01929040e+00, -1.00895302e+00,
7.43382360e-01],
...
[-1.14058869e+00, 3.62715978e-01, 7.68477867e-01,
-2.58526361e+00, -3.00416780e-01, 9.69476314e-01,
-2.19682797e-01, 2.19860620e-01, 2.79471318e-01,
-1.04811112e-01],
[-1.54001992e+00, -6.22544285e-01, -3.64170102e-02,
-1.09635636e+00, -9.05170731e-01, -1.10786184e-01,
-1.39171493e+00, 9.86604489e-01, -1.08879557e+00,
-6.08548011e-01],
[ 6.17575313e-01, -2.13403790e-01, 2.53992666e+00,
5.19865975e-01, -2.07572474e-01, -7.87923937e-01,
5.70160687e-01, -1.04905918e+00, 1.12983874e+00,
-4.39407501e-01],
[-1.11729467e-01, -4.22175794e-01, -2.25268553e+00,
-1.19606496e-01, -3.49896568e-01, -2.93150181e-01,
-2.99802888e-01, -6.05110162e-01, 7.54196773e-01,
6.87767928e-01],
[-2.28555530e-02, -1.54576660e+00, 3.18805345e-01,
4.06413464e-01, -1.27948262e+00, -1.99383849e-01,
3.05378445e-01, -2.80427530e-01, 1.35221088e+00,
-7.24303598e-01]]])
* c
(chain, draw, z)
float64
0.6683 0.3671 ... -0.3076 -2.026
array([[[ 0.66831564, 0.36708198, 0.22199467, ..., 1.25771678,
0.3450337 , -1.1125579 ],
[-0.93983173, 1.13954104, 2.21804669, ..., 0.77809689,
-0.21642523, 0.00635791],
[-0.20901604, 0.77571308, -0.25241717, ..., -0.9995084 ,
-1.38578638, -0.28135435],
...,
[ 0.16802892, 0.32229523, -0.85724513, ..., -0.81558217,
0.96093822, 0.55302968],
[ 0.02318034, 1.17943896, -0.87826199, ..., 0.89085042,
0.12206333, 1.54868647],
[-2.03239759, -0.18238141, -0.97005327, ..., 0.38594957,
-0.30756754, -2.0262429 ]]], shape=(1, 100, 12)) - Indexes: (4)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
dtype='int64', name='draw'))
* PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
* PandasMultiIndex
PandasIndex(MultiIndex([(0, 0),
(0, 1),
(0, 2),
(0, 3),
(1, 0),
(1, 1),
(1, 2),
(1, 3),
(2, 0),
(2, 1),
(2, 2),
(2, 3)],
name='z')) - Attributes: (2)
created_at :
2025-04-28T09:39:31.192125+00:00
arviz_version :
0.22.0dev
- Dimensions:
In order to unstack the dimension z
, we use:
idata.unstack(inplace=True) idata
- posterior
<xarray.Dataset> Size: 19kB
Dimensions: (c1: 3, c99: 4, chain: 1, draw: 100, b1: 10)
Coordinates:- c1 (c1) int64 24B 0 1 2
- c99 (c99) int64 32B 0 1 2 3
- chain (chain) int64 8B 0
- draw (draw) int64 800B 0 1 2 3 4 5 6 7 8 ... 91 92 93 94 95 96 97 98 99
- b1 (b1) int64 80B 0 1 2 3 4 5 6 7 8 9
Data variables:
a (chain, draw) float64 800B -1.235 -0.4379 2.398 ... 0.456 0.1001
b (chain, draw, b1) float64 8kB 0.8308 0.3675 ... 1.352 -0.7243
c (chain, draw, c1, c99) float64 10kB 0.6683 0.3671 ... -2.026
Attributes:
created_at: 2025-04-28T09:39:31.189868+00:00
arviz_version: 0.22.0dev- Dimensions:
* c1: 3
* c99: 4
* chain: 1
* draw: 100
* b1: 10 - Coordinates: (5)
* c1
(c1)
int64
0 1 2
* c99
(c99)
int64
0 1 2 3
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
* b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) - Data variables: (3)
* a
(chain, draw)
float64
-1.235 -0.4379 ... 0.456 0.1001
array([[-1.23476879e+00, -4.37926161e-01, 2.39817109e+00,
1.34348381e+00, 1.21339485e-03, 3.15438444e-01,
7.35033609e-01, 9.65560953e-01, 8.24312202e-03,
-1.80310603e+00, 4.08101885e-01, -2.95430115e-01,
2.78190943e-01, 9.90668634e-01, -3.99399284e-01,
-2.72027384e-01, 1.19196818e+00, 3.49969219e-01,
1.19622511e+00, -8.61209810e-01, 9.85200244e-01,
1.20305854e-01, -1.36472965e+00, 1.03398617e-01,
-1.19051287e+00, 2.11495498e-01, 1.04179059e+00,
-1.03710508e+00, -1.63802057e-01, -3.99820039e-01,
1.30688880e+00, -3.83057110e-02, -9.06050583e-01,
2.48820551e-01, -5.08974977e-01, 1.04261162e+00,
1.40584285e+00, 6.51531365e-01, -5.29515535e-01,
-3.04593589e+00, -5.68566750e-01, -2.78093108e-01,
1.94761103e-01, 2.05373116e-01, -5.83335543e-01,
1.17035863e+00, -2.97906294e-01, -1.67402970e+00,
-1.72365090e+00, 1.92581696e-01, -2.60265647e-01,
5.21271934e-01, 3.56001567e-01, -1.60751185e+00,
1.61585296e+00, -6.82963522e-01, 8.24159730e-01,
4.09450199e-01, 4.04770256e-01, 4.60228804e-01,
-6.82661143e-01, -1.02003227e-01, -1.13765291e-01,
-1.14235773e+00, -4.15391532e-01, -1.41067090e+00,
-1.46574436e+00, -3.13202053e-01, 1.39406586e+00,
-1.29511522e+00, 9.39537140e-01, -4.55419141e-01,
6.04370324e-01, 1.57209831e+00, 5.40923270e-01,
4.38347290e-02, 3.38358419e-01, 1.86168465e+00,
-6.90718230e-01, 6.26648700e-01, 8.05991078e-01,
-4.46184294e-01, 1.08982394e+00, -1.77999060e-01,
1.26866086e+00, 5.97092174e-01, -2.25120881e-01,
1.56019985e+00, 8.03527842e-01, 1.62935836e+00,
-2.97623983e-01, -3.47755384e-01, -9.01573751e-01,
1.10869309e+00, -5.05827277e-01, -9.74696050e-01,
9.92947428e-01, -8.09514001e-01, 4.56045584e-01,
1.00071620e-01]])
* b
(chain, draw, b1)
float64
0.8308 0.3675 ... 1.352 -0.7243
array([[[ 8.30820313e-01, 3.67493125e-01, 7.98132599e-01,
7.70438773e-01, 7.74105192e-01, -1.79324779e+00,
-3.87027470e-01, 4.47196510e-01, 1.48533864e+00,
-1.71888135e+00],
[ 2.31336080e+00, 1.59004210e+00, 6.45303868e-01,
-3.19905569e-01, -1.53934763e+00, -3.88556060e-01,
-8.84357669e-02, -2.00510349e+00, -5.05835156e-01,
-1.08980435e-01],
[-6.89865444e-01, -4.40131470e-01, -7.75649580e-01,
9.08851564e-01, -5.06268792e-01, -1.08475365e+00,
1.21951542e-01, 9.88583270e-01, 1.20366925e+00,
9.18991064e-01],
[ 7.17173433e-01, -7.51736031e-02, -2.08266627e+00,
-6.78884685e-01, 2.11067012e+00, 4.88026636e-01,
-1.67310695e-01, 8.26119703e-02, 5.89468534e-01,
-5.41927204e-01],
[ 1.59644522e-01, 1.07249736e-01, -4.47087991e-01,
4.35488424e-01, 6.84150763e-02, -1.43832679e+00,
-2.08831254e-01, -1.01929040e+00, -1.00895302e+00,
7.43382360e-01],
...
[-1.14058869e+00, 3.62715978e-01, 7.68477867e-01,
-2.58526361e+00, -3.00416780e-01, 9.69476314e-01,
-2.19682797e-01, 2.19860620e-01, 2.79471318e-01,
-1.04811112e-01],
[-1.54001992e+00, -6.22544285e-01, -3.64170102e-02,
-1.09635636e+00, -9.05170731e-01, -1.10786184e-01,
-1.39171493e+00, 9.86604489e-01, -1.08879557e+00,
-6.08548011e-01],
[ 6.17575313e-01, -2.13403790e-01, 2.53992666e+00,
5.19865975e-01, -2.07572474e-01, -7.87923937e-01,
5.70160687e-01, -1.04905918e+00, 1.12983874e+00,
-4.39407501e-01],
[-1.11729467e-01, -4.22175794e-01, -2.25268553e+00,
-1.19606496e-01, -3.49896568e-01, -2.93150181e-01,
-2.99802888e-01, -6.05110162e-01, 7.54196773e-01,
6.87767928e-01],
[-2.28555530e-02, -1.54576660e+00, 3.18805345e-01,
4.06413464e-01, -1.27948262e+00, -1.99383849e-01,
3.05378445e-01, -2.80427530e-01, 1.35221088e+00,
-7.24303598e-01]]])
* c
(chain, draw, c1, c99)
float64
0.6683 0.3671 ... -0.3076 -2.026
array([[[[ 0.66831564, 0.36708198, 0.22199467, 1.27466995],
[ 0.42433825, -0.40039958, -0.47000018, -0.4989017 ],
[-0.22116778, 1.25771678, 0.3450337 , -1.1125579 ]],
[[-0.93983173, 1.13954104, 2.21804669, -2.46661956],
[-0.59889512, -0.01396109, 0.62701941, 0.40075655],
[-0.91628696, 0.77809689, -0.21642523, 0.00635791]],
[[-0.20901604, 0.77571308, -0.25241717, 0.48010558],
[-0.21481481, 0.82594842, 0.19711888, 0.66518324],
[ 0.47912422, -0.9995084 , -1.38578638, -0.28135435]],
...,
[[ 0.16802892, 0.32229523, -0.85724513, 1.59567363],
[-0.32483287, 0.05653649, -0.69011847, -2.05506216],
[-0.31483694, -0.81558217, 0.96093822, 0.55302968]],
[[ 0.02318034, 1.17943896, -0.87826199, 0.86951522],
[-0.51424949, 1.3331247 , -0.38675536, 0.15241207],
[ 0.61192527, 0.89085042, 0.12206333, 1.54868647]],
[[-2.03239759, -0.18238141, -0.97005327, 0.13509366],
[ 0.82075066, 0.83876883, -0.96901319, 0.96037021],
[ 0.36396711, 0.38594957, -0.30756754, -2.0262429 ]]]],
shape=(1, 100, 3, 4)) - Indexes: (5)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
dtype='int64', name='draw'))
* PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
* PandasIndex
PandasIndex(Index([0, 1, 2], dtype='int64', name='c1'))
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='c99')) - Attributes: (2)
created_at :
2025-04-28T09:39:31.189868+00:00
arviz_version :
0.22.0dev
- Dimensions:
- posterior_predictive
<xarray.Dataset> Size: 19kB
Dimensions: (c1: 3, c99: 4, chain: 1, draw: 100, b1: 10)
Coordinates:- c1 (c1) int64 24B 0 1 2
- c99 (c99) int64 32B 0 1 2 3
- chain (chain) int64 8B 0
- draw (draw) int64 800B 0 1 2 3 4 5 6 7 8 ... 91 92 93 94 95 96 97 98 99
- b1 (b1) int64 80B 0 1 2 3 4 5 6 7 8 9
Data variables:
a (chain, draw) float64 800B -1.235 -0.4379 2.398 ... 0.456 0.1001
b (chain, draw, b1) float64 8kB 0.8308 0.3675 ... 1.352 -0.7243
c (chain, draw, c1, c99) float64 10kB 0.6683 0.3671 ... -2.026
Attributes:
created_at: 2025-04-28T09:39:31.192125+00:00
arviz_version: 0.22.0dev- Dimensions:
* c1: 3
* c99: 4
* chain: 1
* draw: 100
* b1: 10 - Coordinates: (5)
* c1
(c1)
int64
0 1 2
* c99
(c99)
int64
0 1 2 3
* chain
(chain)
int64
0
* draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
* b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) - Data variables: (3)
* a
(chain, draw)
float64
-1.235 -0.4379 ... 0.456 0.1001
array([[-1.23476879e+00, -4.37926161e-01, 2.39817109e+00,
1.34348381e+00, 1.21339485e-03, 3.15438444e-01,
7.35033609e-01, 9.65560953e-01, 8.24312202e-03,
-1.80310603e+00, 4.08101885e-01, -2.95430115e-01,
2.78190943e-01, 9.90668634e-01, -3.99399284e-01,
-2.72027384e-01, 1.19196818e+00, 3.49969219e-01,
1.19622511e+00, -8.61209810e-01, 9.85200244e-01,
1.20305854e-01, -1.36472965e+00, 1.03398617e-01,
-1.19051287e+00, 2.11495498e-01, 1.04179059e+00,
-1.03710508e+00, -1.63802057e-01, -3.99820039e-01,
1.30688880e+00, -3.83057110e-02, -9.06050583e-01,
2.48820551e-01, -5.08974977e-01, 1.04261162e+00,
1.40584285e+00, 6.51531365e-01, -5.29515535e-01,
-3.04593589e+00, -5.68566750e-01, -2.78093108e-01,
1.94761103e-01, 2.05373116e-01, -5.83335543e-01,
1.17035863e+00, -2.97906294e-01, -1.67402970e+00,
-1.72365090e+00, 1.92581696e-01, -2.60265647e-01,
5.21271934e-01, 3.56001567e-01, -1.60751185e+00,
1.61585296e+00, -6.82963522e-01, 8.24159730e-01,
4.09450199e-01, 4.04770256e-01, 4.60228804e-01,
-6.82661143e-01, -1.02003227e-01, -1.13765291e-01,
-1.14235773e+00, -4.15391532e-01, -1.41067090e+00,
-1.46574436e+00, -3.13202053e-01, 1.39406586e+00,
-1.29511522e+00, 9.39537140e-01, -4.55419141e-01,
6.04370324e-01, 1.57209831e+00, 5.40923270e-01,
4.38347290e-02, 3.38358419e-01, 1.86168465e+00,
-6.90718230e-01, 6.26648700e-01, 8.05991078e-01,
-4.46184294e-01, 1.08982394e+00, -1.77999060e-01,
1.26866086e+00, 5.97092174e-01, -2.25120881e-01,
1.56019985e+00, 8.03527842e-01, 1.62935836e+00,
-2.97623983e-01, -3.47755384e-01, -9.01573751e-01,
1.10869309e+00, -5.05827277e-01, -9.74696050e-01,
9.92947428e-01, -8.09514001e-01, 4.56045584e-01,
1.00071620e-01]])
* b
(chain, draw, b1)
float64
0.8308 0.3675 ... 1.352 -0.7243
array([[[ 8.30820313e-01, 3.67493125e-01, 7.98132599e-01,
7.70438773e-01, 7.74105192e-01, -1.79324779e+00,
-3.87027470e-01, 4.47196510e-01, 1.48533864e+00,
-1.71888135e+00],
[ 2.31336080e+00, 1.59004210e+00, 6.45303868e-01,
-3.19905569e-01, -1.53934763e+00, -3.88556060e-01,
-8.84357669e-02, -2.00510349e+00, -5.05835156e-01,
-1.08980435e-01],
[-6.89865444e-01, -4.40131470e-01, -7.75649580e-01,
9.08851564e-01, -5.06268792e-01, -1.08475365e+00,
1.21951542e-01, 9.88583270e-01, 1.20366925e+00,
9.18991064e-01],
[ 7.17173433e-01, -7.51736031e-02, -2.08266627e+00,
-6.78884685e-01, 2.11067012e+00, 4.88026636e-01,
-1.67310695e-01, 8.26119703e-02, 5.89468534e-01,
-5.41927204e-01],
[ 1.59644522e-01, 1.07249736e-01, -4.47087991e-01,
4.35488424e-01, 6.84150763e-02, -1.43832679e+00,
-2.08831254e-01, -1.01929040e+00, -1.00895302e+00,
7.43382360e-01],
...
[-1.14058869e+00, 3.62715978e-01, 7.68477867e-01,
-2.58526361e+00, -3.00416780e-01, 9.69476314e-01,
-2.19682797e-01, 2.19860620e-01, 2.79471318e-01,
-1.04811112e-01],
[-1.54001992e+00, -6.22544285e-01, -3.64170102e-02,
-1.09635636e+00, -9.05170731e-01, -1.10786184e-01,
-1.39171493e+00, 9.86604489e-01, -1.08879557e+00,
-6.08548011e-01],
[ 6.17575313e-01, -2.13403790e-01, 2.53992666e+00,
5.19865975e-01, -2.07572474e-01, -7.87923937e-01,
5.70160687e-01, -1.04905918e+00, 1.12983874e+00,
-4.39407501e-01],
[-1.11729467e-01, -4.22175794e-01, -2.25268553e+00,
-1.19606496e-01, -3.49896568e-01, -2.93150181e-01,
-2.99802888e-01, -6.05110162e-01, 7.54196773e-01,
6.87767928e-01],
[-2.28555530e-02, -1.54576660e+00, 3.18805345e-01,
4.06413464e-01, -1.27948262e+00, -1.99383849e-01,
3.05378445e-01, -2.80427530e-01, 1.35221088e+00,
-7.24303598e-01]]])
* c
(chain, draw, c1, c99)
float64
0.6683 0.3671 ... -0.3076 -2.026
array([[[[ 0.66831564, 0.36708198, 0.22199467, 1.27466995],
[ 0.42433825, -0.40039958, -0.47000018, -0.4989017 ],
[-0.22116778, 1.25771678, 0.3450337 , -1.1125579 ]],
[[-0.93983173, 1.13954104, 2.21804669, -2.46661956],
[-0.59889512, -0.01396109, 0.62701941, 0.40075655],
[-0.91628696, 0.77809689, -0.21642523, 0.00635791]],
[[-0.20901604, 0.77571308, -0.25241717, 0.48010558],
[-0.21481481, 0.82594842, 0.19711888, 0.66518324],
[ 0.47912422, -0.9995084 , -1.38578638, -0.28135435]],
...,
[[ 0.16802892, 0.32229523, -0.85724513, 1.59567363],
[-0.32483287, 0.05653649, -0.69011847, -2.05506216],
[-0.31483694, -0.81558217, 0.96093822, 0.55302968]],
[[ 0.02318034, 1.17943896, -0.87826199, 0.86951522],
[-0.51424949, 1.3331247 , -0.38675536, 0.15241207],
[ 0.61192527, 0.89085042, 0.12206333, 1.54868647]],
[[-2.03239759, -0.18238141, -0.97005327, 0.13509366],
[ 0.82075066, 0.83876883, -0.96901319, 0.96037021],
[ 0.36396711, 0.38594957, -0.30756754, -2.0262429 ]]]],
shape=(1, 100, 3, 4)) - Indexes: (5)
* PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
* PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
dtype='int64', name='draw'))
* PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
* PandasIndex
PandasIndex(Index([0, 1, 2], dtype='int64', name='c1'))
* PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='c99')) - Attributes: (2)
created_at :
2025-04-28T09:39:31.192125+00:00
arviz_version :
0.22.0dev
- Dimensions: