arviz.from_cmdstan — ArviZ dev documentation (original) (raw)
arviz.from_cmdstan(posterior=None, *, posterior_predictive=None, predictions=None, prior=None, prior_predictive=None, observed_data=None, observed_data_var=None, constant_data=None, constant_data_var=None, predictions_constant_data=None, predictions_constant_data_var=None, log_likelihood=None, index_origin=None, coords=None, dims=None, disable_glob=False, save_warmup=None, dtypes=None)[source]#
Convert CmdStan data into an InferenceData object.
For a usage example read theCreating InferenceData section on from_cmdstan
Parameters:
posteriorstr or list of str, optional
List of paths to output.csv files.
posterior_predictivestr or list of str, optional
Posterior predictive samples for the fit. If endswith “.csv” assumes file.
predictionsstr or list of str, optional
Out of sample predictions samples for the fit. If endswith “.csv” assumes file.
priorstr or list of str, optional
List of paths to output.csv files
prior_predictivestr or list of str, optional
Prior predictive samples for the fit. If endswith “.csv” assumes file.
observed_datastr, optional
Observed data used in the sampling. Path to data file in Rdump or JSON format.
observed_data_varstr or list of str, optional
Variable(s) used for slicing observed_data. If not defined, all data variables are imported.
constant_datastr, optional
Constant data used in the sampling. Path to data file in Rdump or JSON format.
constant_data_varstr or list of str, optional
Variable(s) used for slicing constant_data. If not defined, all data variables are imported.
predictions_constant_datastr, optional
Constant data for predictions used in the sampling. Path to data file in Rdump or JSON format.
predictions_constant_data_varstr or list of str, optional
Variable(s) used for slicing predictions_constant_data. If not defined, all data variables are imported.
log_likelihooddict of {str: str}, list of str or str, optional
Pointwise log_likelihood for the data. log_likelihood is extracted from the posterior. It is recommended to use this argument as a dictionary whose keys are observed variable names and its values are the variables storing log likelihood arrays in the Stan code. In other cases, a dictionary with keys equal to its values is used. By default, if a variable log_lik
is present in the Stan model, it will be retrieved as pointwise log likelihood values. Use False
to avoid this behaviour.
index_originint, optional
Starting value of integer coordinate values. Defaults to the value in rcParamdata.index_origin
.
coordsdict of {str: array_like}, optional
A dictionary containing the values that are used as index. The key is the name of the dimension, the values are the index values.
dimsdict of {str: list of str}, optional
A mapping from variables to a list of coordinate names for the variable.
disable_globbool
Don’t use glob for string input. This means that all string input is assumed to be variable names (samples) or a path (data).
save_warmupbool
Save warmup iterations into InferenceData object, if found in the input files. If not defined, use default defined by the rcParams.
A dictionary containing dtype information (int, float) for parameters. If input is a string, it is assumed to be a model code or path to model code file.
Returns: